

Operating Manual

MCR-Series

MCV-Series

Precision Gas Mass Flow Controllers

The Fastest Flow Controller Company in the World!

d! CC NIST

Thank you for purchasing an Alicat flow controller.

We know you are going to love your new flow controller. If you have any guestions about operating it, or if something is not working as expected, please let us know. We are eager to help you in any way possible.

Alicat Scientific, Inc.

info@alicat.com · alicat.com 7641 N Business Park Drive, Tucson, AZ 85743 USA 1-888-290-6060

Serial Number:

Next Calibration:

Recalibrate your flow controller every year.

Your calibration date is labeled on the back of the flow controller. Write that date in the space above. When it's time for your flow controller's annual recalibration, contact us by phone, email or live chat to set it up, or fill out the Service Request Form at alicat.com/service.

This Alicat device comes with a NIST traceable calibration certificate.

RoHS

This Alicat flow controller conforms to the European Union's Restriction of Use of Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU.

This Alicat flow controller complies with the requirements of the Low Voltage Directive 2014/35/EU and the EMC Directive 2014/30/EU and carries the CE Marking accordingly.

This Alicat flow controller complies with the requirements of the European Union's Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC.

07/31/2018 Rev.43 DOC-ALIMAN16C

Welcome to the Alicat way.

You're busy, and the last thing you want to do is waste time wrestling with your flow controller. We're here to make your life a little easier so you can do what you do best. It's our pleasure to introduce you to your new Alicat:

• **High-accuracy performance for all your gases.** Use your flow controller with any of the 98 or more gases that are part of Gas Select[™], *page 31*.

• **Control pressure while monitoring flow rate.** Set the closed loop control algorithm for pressure control, *page 26*.

• **Backlit display with adjustable contrast** is easy to read in direct sunlight. In dimly lit areas, press the Alicat logo to turn on the backlight, *page* 7.

• **Change your STP** to match any standard temperature and pressure reference, *page 35*.

• Log data to your PC. Talk to the flow controller serially to capture all flow data for logging and analysis, *page 39.*

This manual covers the following Alicat Scientific instruments:

- MC and MCR-Series Mass Gas Flow Controllers
- MCD and MCRD-Series Dual Valve Mass Gas Flow Controllers
- MCE-Series Mass Gas Flow Controllers
- MCP-Series Mass Gas Flow Controllers
- MCQ and MCRQ-Series High PressureMass Gas Flow Controllers
- MCS and MCRS-Series Mass Gas Flow Controllers
- MCV-Series Mass Gas Flow Controllers
- MCW (WHISPER) Low Pressure Drop Mass Flow Controllers

This includes Alicat flow controllers labeled as approved for CSA Class 1 Div 2 and ATEX Class 1 Zone 2 hazardous environments. See page 98 for Special Conditions regarding the use of CSA/ATEX labeled devices.

Please contact Alicat at 1-888-290-6060 or info@alicat.com if you have any questions regarding the use or operation of this device.

Table of Contents

Quick-Start Guide	6
Getting Started	7
Getting to Know Your Alicat	7
Connectors and Buttons	7
The Flow Controller Display	8
Status Messages	8
Mounting	9
Plumbing	9
Filters	
Connecting Your Gas Flow Controller	10
MCV Controller Operating Notes	11
MCD Dual Valve Mass Flow Controller Operating Notes	12
Power and Signal Connections	
RS-232 / RS-485 Digital Input / Output Signal	15
Analog Signals	
Option: Color TFT Display	
Navigating and Customizing Your Flow Controller	18
Flow Controller Menu Map	
Collecting Live Flow Data	19
Choosing Engineering Units	20
Option: Collecting Totalized Flow Data and Batch Dispensing	
Dispensing Gas in Batches	
Menu	
Taring Your Flow Controller	
Control Menus	25
Commanding a new setpoint	
Changing the setpoint source	
Changing the control loop variable	
Adjusting the PID controller	
About	
Diagnostic Information	
Basic Configuration Menu	
Choosing Device Engineering Units from the Basic Configuration Menu	
Gas Select™	
Gas Select™ Gas List	

Using COMPOSER™ to Personalize Mixed Gas Compositions	
Adding a new mixed gas composition to COMPOSER	
Defining STP/NTP Reference Values	35
Advanced Setup	36
Display Setup	36
Sensor Setup	37
Configuring Your Flow Controller for Serial Communications	38
Serial Communications	39
Establishing Serial Communications	
Serial Streaming vs Polling	40
Taring Serially	41
Collecting Flow Data Serially	
Commanding a New Setpoint Serially	
Quick Serial Command Guide	43
Using Gas Select and COMPOSER Serially	44
Troubleshooting Your Flow Controller	45
Maintenance and Recalibration	48
Gas Properties Data	49
Numerical List of Gases	57
Device Units	60
Accessories	62
Accessories	63
Specification Sheets	64
Optional Pinouts	94
Additional Information for Alicat CSA and ATEX Approved Devices	98
Limited Lifetime Warranty	101

Quick-Start Guide

Setup

• **Tare your flow controller.** After you connect the flow controller, ensure that no air is flowing through the device, power it on and ensure it has a zero setpoint. After a few seconds, it will auto-tare.

• **Choose your engineering units.** Press the button above or below any parameter to enlarge it in the middle of the display. If you select that same item a second time, you can change the engineering unit for that parameter. You can chosse units for all of the parameters at once by selecting **MENU** > **BASIC CONFIG** > **DEVICE UNITS**.

• **Connect your flow controller.** Ensure that flow through your device will be in the same direction as the arrow on the flow body (usually left to right).

Operation: Flow Control

• **Choose your setpoint.** Select **SETPT** from the Main Display to select your flow rate. Press **SET**, and the controller immediately adjusts to the new setpoint.

• **Monitor live flow readings.** You can monitor live readings of flow, pressure and temperature by viewing the screen. Readings are updated in real time.

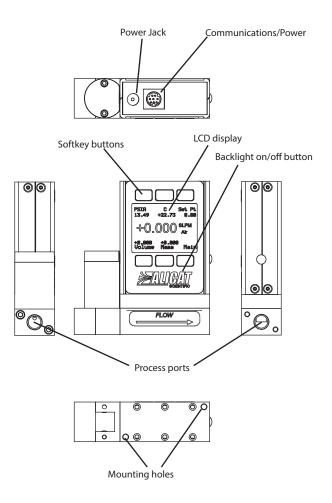
• (**Optional**) **Capture a totalized reading.** The totalizer option displays the total flow that has passed through the device since the last time the totalizer was reset. Press **TOTAL/MENU** to access the totalizer.

Operation: Pressure Control with Flow Monitoring

• Switch the closed loop control to pressure. Select MENU > CONTROL > ADV CONTROL > LOOP SETUP > LOOP VAR, and then choose Absolute Pressure. Your Alicat will now control absolute pressure while monitoring flow rate.

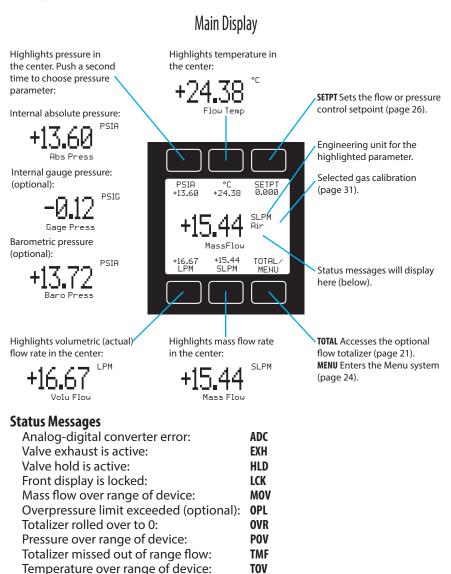
• **Choose your setpoint.** Select **SETPT** from the Main Display to select a pressure setpoint. Press **SET**, and the controller immediately adjusts to the new setpoint.

Maintenance and Care


• If your gas is clean, your flow controller will require no periodic cleaning.

• **Calibrate your flow controller annually.** Request an Alicat factory calibration at alicat.com/service or by calling Alicat at 1-888-290-6060.

Getting to Know Your Alicat


Connectors and Buttons

The drawings below represent the default configuration of a standard Alicat mass flow controller (MC series) with an upstream valve. Your flow controller's appearance and connections may differ, especially if it has been ordered with a large Rolamite valve or a downstream valve.

The Flow Controller Display

The figure below identifies the various features of the flow controller display. Press the large button with the Alicat logo to toggle the backlight on and off. For more details, see the Menu Map on page 18 and the menu-by-menu descriptions that follow it.

VOV

Volumetric flow over range of device:

Mounting

No straight runs of pipe are required upstream or downstream of the flow controller. Most Alicat flow controllers can be mounted in any position, including upside-down. (MCS/MCRS series flow controllers use media-isolated sensors that must be tared after changing orientation.)

Caution: Flow controllers that use large Rolamite valves (MCR/MCRW/ MCRQ/MCRS) should be mounted with their valve oriented vertically (right-side up). If another orientation is desired, please contact Alicat.

Plumbing

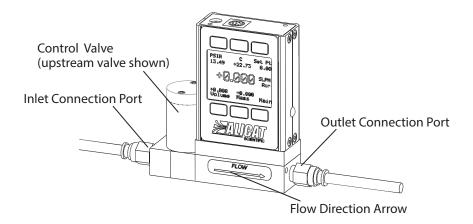
Your controller has been shipped with plastic plugs fitted into its ports. To lessen the chance of contaminating the flow stream, do not remove these plugs until you are ready to install the device.

Standard Alicat Gas Flow controllers have female inlet and outlet ports. Welded VCR and other specialty fittings may have male connections.

» If you are using a fitting that does not have a face seal, use thread-sealing Teflon tape to prevent leakage around the port threads, but do not wrap the first two threads. This will minimize the possibility of getting tape into the flow stream and clogging the laminar flow elements (LFE).

» If you are using a fitting that has a face seal, there is no need to apply Teflon tape to the threads.

Warning: Do not use pipe dopes or sealants on the process connections as these compounds can cause permanent damage to the controller should they get into the flow stream.


Filters

When pressure drop is not an issue, use in-line sintered filters to prevent large particulates from entering the flow controller. Suggested maximum particulate sizes are as follows:

- » 5 microns for units with flow ranges of 1 sccm or less.
- » 20 microns for units with flow ranges between 2 sccm and 1 slpm.
- » 50 microns for units with flow ranges of 1 slpm or more.

Connecting Your Gas Flow Controller

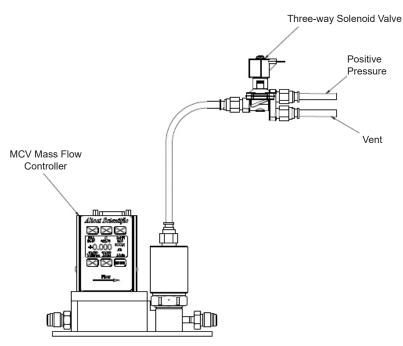
Your Alicat flow controller can measure and control flow generated by positive pressure and/or suction. Connect the controller so that the flow travels in the same direction as the flow arrow, usually from left to right as you look at the front of the device.

Warning: Using the flow controller above the maximum specified internal line pressure, or above the maximum recommended differential pressure between the inlet and outlet, will result in permanent damage to the internal pressure sensors.

A common cause of this problem is the instantaneous application of high-pressure gas, as from a snap-acting solenoid valve either upstream or downstream of the flow controller. If you suspect that your pressure sensor is damaged, please discontinue use of the device and contact Alicat.

Model	Max Pressure at Sensor	Max Differential Pressure
MC//MCR/MCS	145 psig	75 psid
MCW/MCRW	45 psig	15 psid
MCQ/MCRQ	305 psig	100 psid

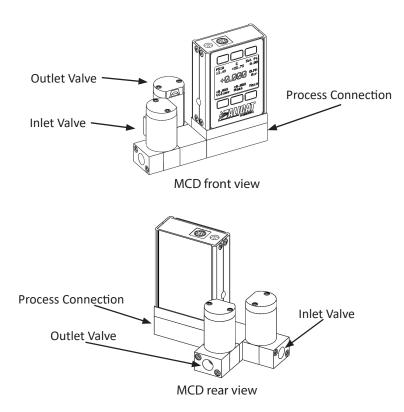
See the chart below for pressure limits.


MCV Controller Operating Notes

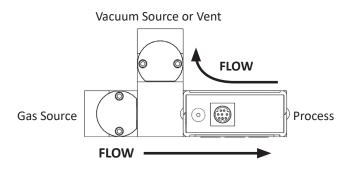
Alicat's MCV mass flow controller is equipped with an integrated Swagelok[®] positive shutoff valve. The normally closed valve is actuated by a gas (typically air) and opens when supplied with 60-120 psig of pressure. The shut-off valve closes again when this pressure is removed.

A common method for actuating the shutoff valve incorporates a three-way solenoid valve (below). Pressure is applied to one side of the solenoid valve while the other side of the solenoid is left open to atmosphere. When the solenoid is energized, pressure is delivered to the shutoff valve, causing it to open. When the solenoid is returned to a relaxed state, the gas vents to atmosphere, allowing the shut-off valve to close.

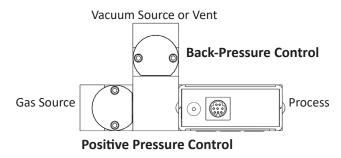
All standard MC-Series device features and functions are available on the MCV-Series and operate in accordance with the standard MC-Series operating instructions.

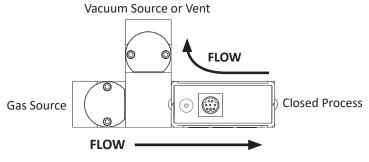

MCV mass flow controller and three-way solenoid valve.

MCD Dual Valve Mass Flow Controller Operating Notes


The MCD is a versatile Dual-Valve Mass Flow and Pressure Controller. It can be used to:

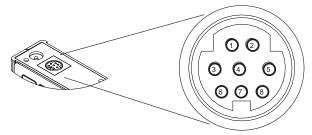
- Measure mass flow and volumetric flow in both directions, plus absolute pressure and temperature.
- Control mass or volumetric flow from a pressurized source or to vacuum.
- Control absolute pressure or back-pressure in a flowing process.
- Control absolute pressure in a closed volume with automatic venting.


Application examples are shown below and on the following page. Please contact Alicat if you have any questions regarding MCD use.


Bidirectional Mass or Volumetric Flow Control

Flowing Absolute Pressure Control

Dead-Ended Absolute Pressure Control


Power and Signal Connections

Power can be supplied to your controller through either the power jack or the multi-pin connector on top of your device.

Small valve controller power jacks require a 12-30 Vdc power supply with a 2.1 mm female positive center plug capable of supplying at least 250 mA. 4-20 mA analog signal outputs require at least 15 Vdc, , and 0-10 Vdc outputs require at least 10 Vdc..

Large valve controllers require a 24-30 Vdc power supply with a 2.1 mm female positive center plug capable of supplying at least 750 mA.

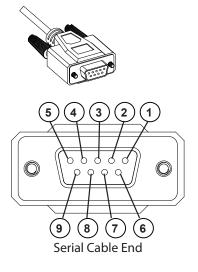
Standard 8-Pin Mini-DIN Pinout

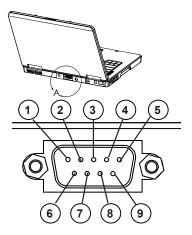
Pin	Function	Mini-DIN cable color
1	Not Connected (or optional 4-20 mA Primary Output Signal)	Black
2	Static 5.12 Vdc (or optional Secondary Analog Output [4-20 mA, 0-5 Vdc, 1-5V dc, 0-10 Vdc] or Basic Alarm)	Brown
3	Serial RS-232RX / RS-485(–) Input Signal (receive)	Red
4	Analog Setpoint Input	Orange
5	Serial RS-232TX / RS-485(+) Output Signal (send)	Yellow
6	0-5 Vdc (or optional 1-5 Vdc or 0-10 Vdc) Output Signal	Green
7	Power In (as described above)	Blue
8	Ground (common for power, digital communications, analog signals and alarms)	Purple
Note: The above pinout is applicable to all the flow controllers and controllers with the Mini-DIN connector. The availability of different output signals depends on the options ordered. Optional		

configurations are noted on the unit's calibration sheet.

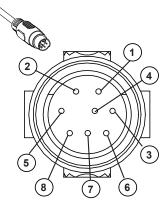
Caution: Do not connect power to pins 1 through 6, as permanent damage can occur.

It is common to mistake Pin 2 (labeled 5.12 Vdc Output) as the standard 0-5 Vdc analog output signal. Pin 2 is normally a constant 5.12 Vdc that reflects the system bus voltage.

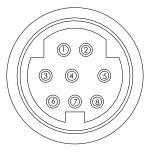

For 6-pin locking industrial connector, DB9 and DB15 pinouts, see page 92 to page 95 or visit alicat.com/pinout.


RS-232 / RS-485 Digital Input / Output Signal

To use the RS-232 or RS-485 digital signal, connect the RS-232 / RS-485 Output Signal (Pin 5), the RS-232 / RS-485 Input Signal (Pin 3) and Ground (Pin 8) to your serial port as shown below. (See "Serial Communications" on page 39 for details)


DB9 to 8-Pin Mini-DIN Connection for RS-232 / RS-485 Signals

9 Pin Ser	ial Connection	8 Pin Mini-DIN Con	nection
Pin	Function	Function	Pin
5	Ground	Ground	8
3	Transmit	Receive	3
2	Receive	Transmit	5



Serial Port

8 Pin Mini-DIN Cable End

Analog Signals

Primary Analog Output Signal

Most Alicat instruments include a primary analog output signal, which is linear over its entire range. For both standard 0-5 Vdc and optional 0-10 Vdc output signals, a zero flow condition is usually in the range of 0.010 Vdc. Zero flow for the optional 1-5 Vdc and 4-20 mA output signals is 1 Vdc and 4 mA, respectively. Full-scale flow is 5 Vdc for 0-5 Vdc and 1-5 Vdc signals, 10 Vdc for 0-10 Vdc signals and 20 mA for 4-20 mA signals.

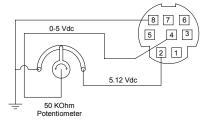
Alicat's default 8-pin mini-DIN connector places the primary analog output on Pin 6 for voltage signals and Pin 1 for 4-20 mA current signals. Ground for these signals is common on Pin 8.

Option: Second Analog Output Signal

Alicat's default 8-pin mini-DIN connector places the secondary analog output on Pin 2 for both voltage and current signals. Your device's secondary analog signal may differ from its primary output signal.

See the Calibration Sheet that shipped with your meter to determine which output signals were ordered.

Option: 4-20 mA Current Output Signal


If your meter has a 4-20 mA current primary or secondary output signal, your flow meter will require 15-30 Vdc power.

Caution: Do not connect 4-20 mA devices to "loop powered" systems, as this will destroy portions of the circuitry and void the warranty. If you must interface with existing loop powered systems, always use a signal isolator and a separate power supply.

Setpoint Analog Input Signal

Your mass flow controller may be a configured with a different analog inout signal than its output signal(s). One method for providing a remote setpoint to controllers with a 0-5 Vdc or 0-10 Vdc analog signal is shown below.

Note: Devices with 4-20 mA input signalsare current sinking devices. The receiving circuit is essentially a 250 ohm resistor to ground.

Option: Color TFT Display

Instruments ordered with a color display function the same as standard backlit monochrome instruments, but color is used to provide additional on-screen information.

Multi-Color Display Indicators

» **GREEN:** Parameter labels and adjustments associated with the button directly above or below the label are presented in green.

» **WHITE:** The color of each parameter is displayed in white while operating under normal conditions.

» **RED:** The color of a parameter is displayed in red when its value exceeds 128% of the device's specifications.

» **YELLOW:** Menu items that are ready to be selected appear in yellow. This color replaces the symbol (>) in selections on monochrome display.

Press the Alicat logo button to turn off the color display backlight. The flow meter remains in operation while the backlight is off.

LCD Contrast


LCD contrast is ranged from 0 to 11 on color displays, with 11 indicating the greatest contrast. See "Display Setup" on page 36.

Specifications for Instruments with Color Displays

The following specifications replace the standard power specifications when the instrument is equipped with a color display. All other specifications from your device's specification sheet remain in effect.

Specification	Small Valve Controller	Large Valve Controller
Supply Voltage	12 to 30 Vdc	24 to 30 Vdc
Supply Current	290 mA @ 12Vdc 200 mA @ 24Vdc	780 mA @ 24Vdc

Flow Controller Menu Map



Collecting Live Flow Data

The Main Display has three primary functions:

- Collecting live temperature, pressure and flow data (see below)
- Changing engineering units for temperature, pressure and flow (page 20)
- Changing the flow or pressure control setpoint (page 26)

This screen displays live data for all flow parameters simultaneously. Live data is measured 1000 times every second but refreshed more slowly on the display. Press the button above or below any of the four flow parameters once to highlight its value in the center of the screen. Press the same button again to enter the engineering unit selection menu for that parameter (page 20).

Choosing Engineering Units

Press the button above or below any of the four flow parameters twice to enter its unit selection menu. You can change units in two ways:

Button engineering units alter the display only, not the serial data frame:

• Select **Set button eng units** and press **SELECT** to change the engineering unit on the display only. This does not alter the controller data frame.

Device engineering units alter both the display and the flow controller data frame:

• Select **Set device eng units** and then choose the engineering unit as above. An additional confirmation screen asks you to confirm the serial change.

• If the button engineering unit is different than the device engineering unit, **Set device eng units** will not appear. First select **Show device eng units** to revert the button to the current device unit for that parameter. Enter the unit selection menu again to change the device engineering unit.

The example above shows the unit selection menu for a device that has the internal barometer option.

PSIA DOWN ٩F SETPT HP +75.88 +15.44 Set button eng units +13.60 Show device eng units °F Air Flow Temp CANCEL SELECT SETPT +15.44 UP PSIA °C DOWN Set button eng units +13.60 +24.38 Set device enqunits °C Air Flow Temp SELECT CANCEL

Examples of changing device engineering units:

Changing device units:

°F is not the existing device engineering unit, so the unit selection menu displays Show device eng units. Select this to revert the button unit to the device unit for this parameter.

Changing device units:

°C is the existing device engineering unit, so the unit selection menu displays **Set device eng units**. Select this to choose a new unit.

Option: Collecting Totalized Flow Data and Batch Dispensing

Your flow controller may have an optional flow totalizer, which enables batch dispensing. The totalizer displays the total amount of mass or volume that has flowed through the instrument since its last reset, like a gasoline pump. Access the totalizer screen by pressing **TOTAL/MENU** on the Main Display.

Totalizer - Batch Off (Optional)

TOTAL/TIMER Toggles between totalized flow and elapsed time as the parameter highlighted in the center.

M AVG or V AVG Optional / totalizer averaging: Displays average flow rate since last reset, updated live.

SETPT Displays the current setpoint. Press to set a new setpoint or to clear the setpoint.

SETPI

+16.60

RESET

+16.62 SL

2:56 h:m:s

SLPM

+16.57

MENUZ

MAIN

τοτοι /

TIMER

-NONE-

BATCH

M AVG

Displays live flow rate. Press to select engineering units.

Alternating display of:

- Selected engineering unit for totalized flow or time (page 30).
- Selected gas calibration (page 31).

Displays totalized flow and elapsed time since last reset. Time units alternate with status messages when any are present (page 8).

BATCH Selects the quantity to be dispensed in each batch. Displays **-NONE-** when it is 0.

RESET Clears all totalized data and resets the timer to 0. The next batch, if set, begins immediately.

MENU/MAIN Enters the Menu system (page 24). From there, press MAIN to exit to the Main Display of live data.

Totalizer Rollover Functions

Your flow totalizer has been configured to report a maximum of 7 digits. By default, the placement of the decimal is the same as the live flow rate. The totalizer can be configured at the time of order for the following behaviors. (By default, the totalizer rolls over and displays OVR.)

• **Rollover:** Totalizer resumes counting from 0 as soon as the maximum count has been reached.

- Freeze: Totalizer stops counting at max count, until it is reset manually.
- Error: Displays OVR status message when maximum count has been reached; compatible with Rollover and Freeze.

The elapsed time counter has a maximum value of 9999:59:59 (h:m:s). If flow is still being totalized at that point, the timer freezes, regardless of the behavior chosen above for the totalized flow readings.

Dispensing Gas in Batches

Batch dispensing allows you to choose a desired total quantity to flow, after which the valve closes. You can repeat batches with a single button press.

Totalizer - Batch On (Optional)

SETPT Displays the current setpoint. Batch dispensing can begin only when there is a non-zero setpoint.

REMAIN Displays the remaining quantity yet to be dispensed. Press to select a new quantity.

DONE BATCH Appears when the batch is complete. Press to select a new quantity to be dispensed.

Flow stops as soon as the batch completes. TOTAL SETPT SLPM +16.60 +0.00 TIMER M AVG +16.61 SL 3:37 h:m:s DONE-MENU/ RESET BATCH MAIN

RESET Clears all totalized data and resets the timer to 0. The next batch begins immediately.

How to start batch dispensing

1. From the totalizer screen, press **BATCH**. Choose the total quantity to be dispensed in each batch. Press **SET** to accept the new Batch Size.

2. From the totalizer screen, press **SETPT** to choose a non-zero setpoint. Flow begins as soon as you press **SET**.

Note: Batch dispensing requires an active Batch Size and a non-zero setpoint. If your controller already has a non-zero setpoint, flow begins as soon as you press SET from the Batch Size screen.

3. While a new batch is being dispensed, the **BATCH** button changes to show the quantity that remains to be dispensed. When the Batch Size has been achieved, the **BATCH** button displays -**DONE-** and flow stops automatically.

Dispensing Gas in Batches (continued)

The Batch Size can be changed while a batch is in progress. If the new Batch Size is larger than the current totalized flow, then flow continues until the new value is reached. If the new Batch Size is smaller than the current totalized flow, then the flow stops immediately. Press **RESET** to start the new batch.

How to repeat a batch

1. For a new batch of identical size, simply press **RESET**. Flow begins at once.

2. For a new batch of a different size, press **BATCH**, and then select the new Batch Size. Flow begins as soon as you press **SET**.

How to cancel a batch

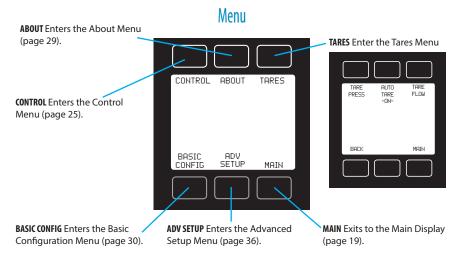
1. To interrupt a batch in progress, clear the setpoint by pressing SETPT > CLEAR > SET.

2. To turn off batch dispensing altogether, first clear the setpoint by pressing SETPT > CLEAR > SET, press BATCH and then select a Batch Size of 0.

Caution: If your controller has a non-zero setpoint when batch dispensing is turned off, flow will resume immediately at the current setpoint.

 \checkmark

Note: The Batch Size is retained in memory across power cycles of your flow controller. It must be manually cleared when no longer desired.


When batch mode is off, -NONE- appears above the BATCH button.

Using the Totalizer or Batch Dispensing while Controlling Pressure While using a mass flow controller in pressure control mode, it is possible for the flow rate to exceed the maximum measurable flow (128% of full scale) when making an abrupt pressure change. In this case, the totalized flow value will flash, and the controller will report a **TMF** message to indicate that the totalizer missed flow data. Please reset the totalizer to clear the incomplete data.

In certain situations, it is possible to exceed the desired Batch Size. For example, if the feed pressure is too low to achieve the flow setpoint and then pressure is suddenly increased, the Batch Size may be exceeded before the valve reacts to the sudden burst of pressure.

Menu

You can enter the menu system by pressing the **MENU** button from the Main Display.

Taring Your Flow Controller

Taring is an important practice that ensures that your flow controller is providing the most accurate measurements possible. This function gives the flow controller a good zero reference for flow measurements. For controllers with a barometer, taring can also be used to align the internal absolute pressure sensor with the barometric pressure reading.

How to Tare

When auto tare is **-0N-** your flow controller automatically tares its flow rate whenever it has a zero setpoint for more than 1.2 seconds. For manual tares, follow these steps:

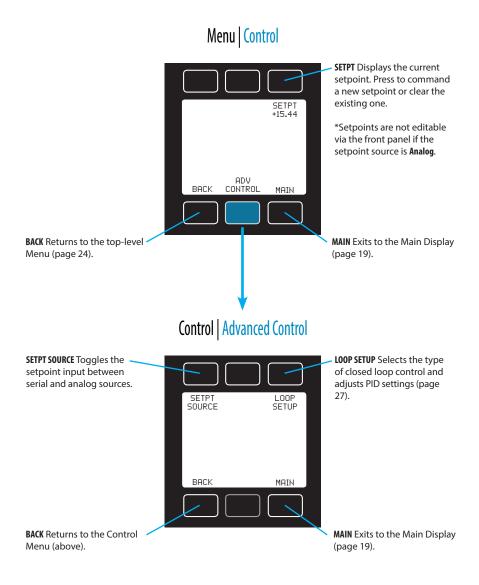
1. Ensure that nothing is flowing through the device, usually by giving the controller a zero setpoint.

2. MENU > TARE> TARE FLOW. Flow tares should occur at the expected process pressure, as long as there is no flow.

3. MENU > TARE> TARE PRESS Absolute pressure tares must be done with the controller open to atmosphere.

When to tare

- After significant changes in temperature or pressure.
- After installing the controller in a different orientation.
- After dropping or bumping the flow controller.



TARE PRESS

Control Menus

The Control and Advanced Control menus allow you to command new setpoints, change the setpoint control loop and adjust PID settings, among other options.

Commanding a new setpoint

Press the **SETPT** button from either the Main Display or the Control Menu (**MENU** > **CONTROL**) to choose a new setpoint. The setpoint selection screen indicates the maximum allowable setpoint (e.g., **SLPM 20.00 Max**). To cancel a setpoint, press **CLEAR**.

Changing the setpoint source

Unless your mass flow controller has been ordered with an industrial protocol, it will accept setpoints from the front panel, a serial connection or an analog signal. Change the setpoint source by selecting **MENU** > **CONTROL** > **ADV CONTROL** > **SETPT SOURCE**.

» When the source is set to **Serial/Front Panel**, the controller will accept input from either the front panel or an RS-232/RS-485 connection. Neither source is a slave of the other, so the controller will accept the most recent command from either source.

» When the source is set to **Analog**, the controller will ignore serial setpoint commands and will prevent input from the front panel.

Adjusting the setpoint with the optional IPC (Integrated Potentiometer Control) If your controller has been ordered with a potentiometer control knob (IPC), the setpoint source must be set to **Analog** for the controller to accept setpoint commands from the IPC.

When using an analog setpoint signal with a controller that has an IPC, leave the IPC knob at the midpoint when it is not in use.

Changing the control loop variable

Your mass flow controller can control the flow rate or the pressure in your process. Change the control loop variable by selecting **MENU > CONTROL > ADV CONTROL > LOOP SETUP > LOOP VAR**. Loop variables include mass flow, volumetric flow and absolute pressure. Devices with internal barometers also allow control of gauge pressure.

 \checkmark

Note: When pressure is selected as the control loop variable, flow controllers with upstream valves will control the outlet pressure. Those with downstream valves can control upstream backpressure, but these must be configured for this type of control.

When changing the control loop from mass or volumetric flow to absolute or gauge pressure, you may need to adjust the PID settings for optimal stability and speed of response. (See PID on page 27.)

Adjusting the PID controller

Your mass flow controller uses an electronic PID controller to determine how to actuate its valve(s) in order to achieve the commanded setpoint. We have tuned these settings for your specific operating conditions, but changes to your process sometimes require on-site adjustments to maintain optimal control performance. If you encounter issues with control stability, oscillation or speed of response, fine-tuning your PID control loop may help.

The Loop Setup menu (**MENU** > **CONTROL** > **ADV CONTROL** > **LOOP SETUP**) lets you choose the PID control loop algorithm and adjust the gain settings for the proportional, integral and derivative variables.

Tuning the PD/PDF control algorithm

Alicat's default control algorithm (PD) employs pseudo-derivative feedback (PDF) control, which uses just two variables:


• The larger the **D** gain, the slower the controller will correct errors between the commanded setpoint and the measured process value. This is equivalent to the P variable in common PDF controllers.

• The larger the **P** gain, the faster the controller will correct for offsets based on the size of the errors and the amount of time they have occurred. This is equivalent to the I variable in common PDF controllers.

Note: The D and P variables in Alicat's PD/PDF control algorithm are more typically referred to as P and I, respectively, in PDF controllers.

Advanced Control | Loop Setup

Adjusting the PID controller (continued)

Tuning the PD²I control algorithm

Alicat's PD²I control algorithm (also called PDDI) is used in dual-valve flow and pressure controllers to provide faster response and reduce oscillations. This algorithm uses typical PI terms and adds a squared derivative term (D):

• The larger the **P** gain, the more aggressively the controller will correct errors between the commanded setpoint and the measured process value.

• The larger the I gain, the faster the controller will correct for offsets based on the size of the errors and the amount of time they have occurred.

• The larger the **D** gain, the faster the controller will predict needed future corrections based on the current rate of change in the system. This often results in slowing the system down to minimize overshoot and oscillations.

Troubleshooting valve performance with PID tuning

The following issues can often be resolved by adjusting the PID gain values for your mass flow controller.

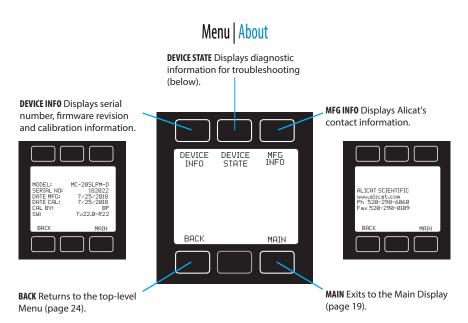
- · Fast oscillation around the setpoint
 - » PD: Reduce the P gain in decrements of 10%.

» PD²I: Reduce the P gain in decrements of 10%, and then reduce the I gain to fine-tune.

- Overshot setpoint
 - » PD: Reduce the P gain in decrements of 10%.
 - » PD²I: If D is not 0, increase the P gain in decrements of 10%.
- · Delayed or unattained setpoint

» PD: Increase the P gain in increments of 10%, and then decrease the D gain by small amounts to fine-tune.

» PD²I: Increase the P gain in increments of 10%, and then increase the I gain to fine-tune.

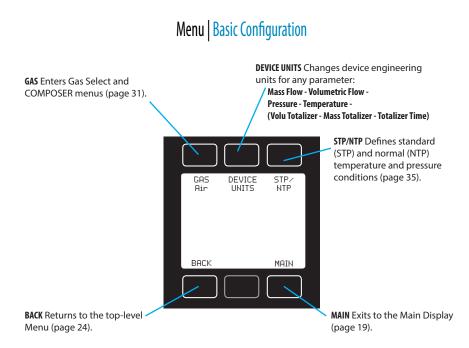

Note: Alicat configures PD^2I algorithm gains for dual-valve controllers based on expected process conditions. If you are switching a PDF controller to PD^2I for the first time, try gain settings of P=200, I=200and D=20 as a starting point.

Valve tuning can be complex. Please give us a call, and we'll be happy to guide you through the process. Or, visit alicat.com/pid for more detailed instructions.

About

We hope you don't run into trouble using your flow controller, but if you do, the **ABOUT** menu contains information that can make the troubleshooting process easier. Select **MFG INFO** to look up Alicat's phone number and web address. **DEVICE INFO** shows you the serial number and firmware version (**SW**:) for your specific device. It also gives you the original manufacturing date and the last calibration date, as well as the initials of the Alicat calibraton technician.

Diagnostic Information


The **DEVICE STATE** screen displays live values for the internal device registers. Many of these values can help an Alicat applications engineer diagnose operational issues over the phone. Some register values clearly distinguish between hardware and operational problems, which speeds up the troubleshooting process.

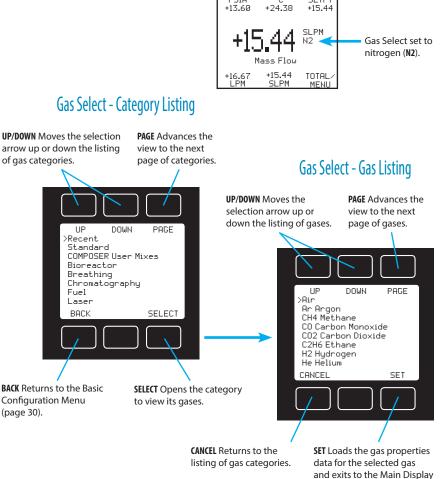
Within the **DEVICE STATE** screen, press **PAGE** to advance to the next page of register values.

Basic Configuration Menu

The Basic Configuration Menu contains options for choosing the gas calibration, device engineering units and STP/NTP mass flow references.

Choosing Device Engineering Units from the Basic Configuration Menu

Changing device engineering units alters both the display and the data frame. First choose the parameter whose unit you want to change, and then select your desired engineering unit, confirming the change on the last screen. If your controller has been configured with a flow totalizer, this screen will also include units for totalized volumetric and mass flow, plus elapsed time.



Gas Select™

In most cases, your flow controller was physically calibrated on air at Alicat's factory. Gas Select[™] allows you to reconfigure the flow controller to flow a different gas without sending it back to Alicat for a physical recalibration.

To use Gas Select, simply choose a gas or gas mix from one of the listed categories. As soon as you press **SELECT** from the gas listing, your flow controller will reconfigure itself to flow your chosen gas. There is no need to restart the flow controller.

Your current gas selection appears just below the unit's indicator on the right side of the Main Display:

(page 19).

Gas Select[™] Gas List

Your Alicat is preloaded with gas properties data for the following gases. See page 49 for gas properties data (viscosity, density and compressibility).

Pure Non-Corrosive Gases

- Acetylene C2H2
- Helium He
- Air • Argon Ar
- Hydrogen H2
- Krypton Kr Methane CH4

• Neon Ne

Nitrogen N2

- iso-Butane iC4H10
- normal-Butane nC4H10
- Carbon dioxide CO2
- Carbon monoxide CO
- Deuterium D2
- Oxvgen O2 Propane C3H8

Nitrous Oxide N2O

- Ethane C2H6
- Ethylene (Ethene) C2H4
- Sulfur Hexafluoride SE6
- Xenon Xe

Breathing Gas Mixes

 Metabolic 	• EAN-40	 Heliox-20 	 Heliox-50
Exhalant	• EA-40	 Heliox-21 	• Heliox-60
• EAN-32	• EA-60	• Heliox-30	• Heliox-80
• EAN-36	• EA-80	• Heliox-40	• Heliox-99

Bioreactor Gas Mixes

- 5% CH4 • 30% CH4 • 55% CH4 • 80% CH4 • 10% CH4 • 35% CH4 • 60% CH4 • 85% CH4 • 65% CH4 • 90% CH4 • 15% CH4 • 40% CH4 • 70% CH4 • 95% CH4
- 20% CH4 45% CH4 • 25% CH4 • 50% CH4 • 75% CH4
 - Refrigerants (*S-series only)
- R-11 • R-134A • R-22 • RC-407C • R-115 • R-14 • R-23 • R-410A • R-507A • R-116 • R-142b • R-32 • R-124 • R-143a • RC-318
- R125 • R-152a • RC-404A

Welding Gas Mixes

• C-2	• C-20	• He-25	• A1025
• C-8	• C-25	• He-50	 Stargon CS
• C-10	• C-50	• He-75	
• C-15	• C-75	• He-90	

Stack/Flue Gas Mixes

- 2.5% O2+10.8% CO2+85.7% N2+1% Ar
- 2.9% O2+14% CO2+82.1% N2+1% Ar
- 3.7% O2+15% CO2+80.3% N2+1% Ar
- 7% O2+12% CO2+80% N2+1% Ar
- 10% O2+9.5% CO2+79.5% N2+1% Ar
- 13% O2+7% CO2+79% N2+1% Ar

Pure Corrosive Gases (*S-series only)

- Ammonia NH3
- Butvlene 1Buten
- Cis-Butene cButen
- iso-Butane iButen
- Trans-Butene tButen
- Carbonyl Sulfide COS
- Chlorine Cl2
- Dimethylether DME
- Hvdrogen Sulfide H₂S
- Nitrogen
- Trifluoride NF3
- Nitric Oxide NO
- Propylene C3H6
- Sulfur Dioxide SO2

Chromatography Gas Mixes

• P-5 • P-10

Laser Gas Mixes

- 4.5% CO2+13.5% N2+82% He
- 6% CO2+14% N2+80% He
- 7% CO2+14% N2+79% He
- 9% CO2+15% N2+76% He
- 9.4% CO2+19.25% N2+71.35% He
- 9% Ne+91% He

Oxygen Concentrator Gas Mixes

- 89% O₂+7% N₂+4% Ar
- 93% O₂+3% N₂+4% Ar
- 95% O₂+1% N₂+4% Ar

Fuel Gas Mixes

- Coal Gas 50% H2+35% CH4+10% CO+5% C2H4
- Endothermic Gas 75% H2+25% N2
- · HHO 66.67% H2+33.33% O2
- LPG HD-5 96.1% C3H8+1.5% C2H6+0.4% C3H6 +1.9% n-C4H10
- · LPG HD-10 85% C3H8+10% C3H6+ 5% n-C4H10

Natural Gases

- 93% CH4+3% C2H6+1% C3H8+2% N2+1% CO2
- 95% CH4+3% C2H6+1% N2+ 1% CO2
- 95.2% CH4+2.5% C2H6+0.2% C3H8+0.1% C4H10+1.3% N2+0.7% CO2

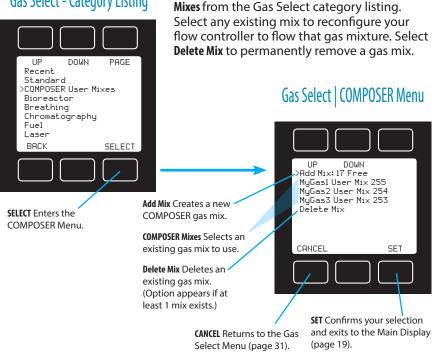
Synthesis Gases

- 40% H2+29% CO+20% CO2+11% CH4
- 64% H2+28% CO+1% CO2+7% CH4
- 70% H2+4% CO+25% CO2+1% CH4
- 83% H2+14% CO+3% CH4

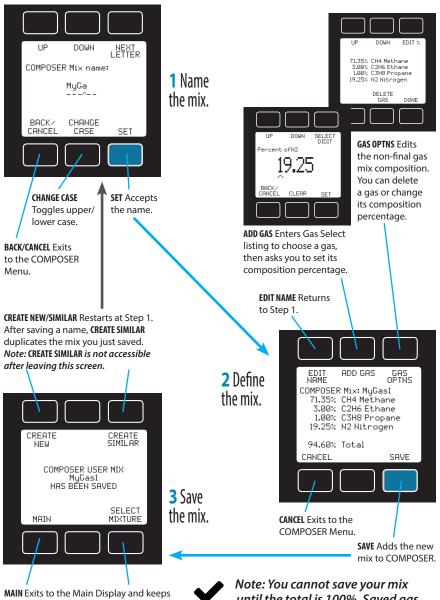
- Silane SiH4

Using COMPOSER™ to Personalize Mixed Gas Compositions

To remain accurate, your flow controller needs to know the viscosity of the gas you are flowing through it. The more closely you can define your actual gas composition, the more accurate your flow readings will be. Alicat's COMPOSER is an included feature of Gas Select that lets you define new mixed gas compositions to reconfigure your flow controller on the fly.

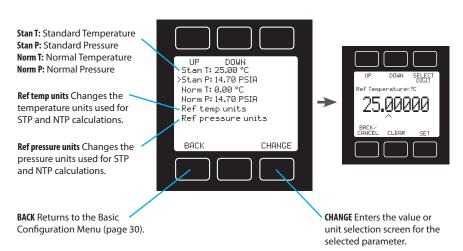

COMPOSER uses the Wilke method to define a new gas mixture based on the molar (volumetric) ratios of the gases in the mixture. You can define these gas compositions to within 0.01% for each of up to five constituent gases in the mixture. Once you define and save a new COMPOSER gas mix, it becomes part of the Gas Select system and is accessible under the gas category **COMPOSER User Mixes**. You can store 20 COMPOSER gas mixes on your flow controller.

Note: COMPOSER does not physically mix any gases for you. It reconfigures your flow controller to report flow readings more accurately based on the constituents of your defined gas mixture.


To access COMPOSER, select COMPOSER User

Gas Select - Category Listing

Adding a new mixed gas composition to COMPOSER


Generate and store a new COMPOSER mix in 3 easy steps.

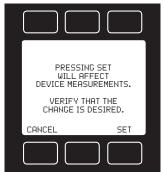
your existing gas selection. **SELECT MIXTURE** also activates the new COMPOSER mix. Note: You cannot save your mix until the total is 100%. Saved gas compositions cannot be changed.

Defining STP/NTP Reference Values

Standardized flow rates are reported in "standard" or "normal" volumetric flow units that reference a given temperature and pressure combination. This reference is called an STP (standard temperature and pressure) or, typically in Europe, an NTP (normal temperature and pressure).

Basic Configuration | STP/NTP

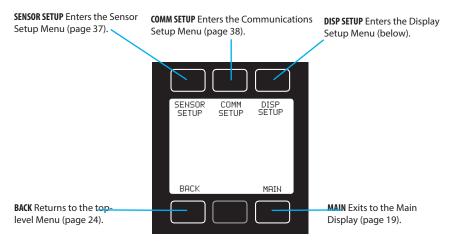
Using the **STP/NTP** menu, you can independently change the temperature or pressure references for STP and NTP. Your flow meter ships with Alicat default STP of 25°C and 1 atm (which affects flow units beginning with "S"), and an NTP of 0°C and 1 atm (which affects flow units beginning with "N").


To make changes, follow these steps:

1. Select the desired pressure or temperature reference engineering unit by selecting **Ref temp** units or **Ref pressure units** and pressing **CHANGE**. Both normal and standard references use the same engineering units.

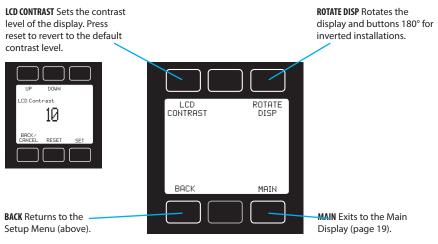
2. Select the temperature or pressure value you wish to modify, and press **CHANGE**.

3. At the confirmation screen, press **SET** to confirm your desired change.


Caution: Changes to STP/NTP references will alter your mass flow readings.

Advanced Setup

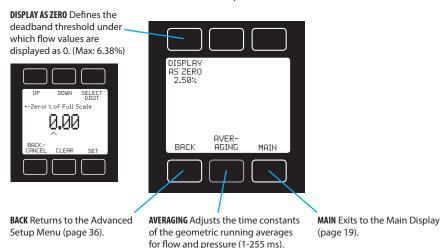
The Advanced Setup Menu lets you configure the display, deadband, averaging (for flow and pressure) and serial communications.


Menu | Advanced Setup

Display Setup

The options in the Display Setup Menu adjust the contrast of the display and enable screen rotation.

Advanced Setup | Display Setup



Navigating and Customizing Your Flow Controller

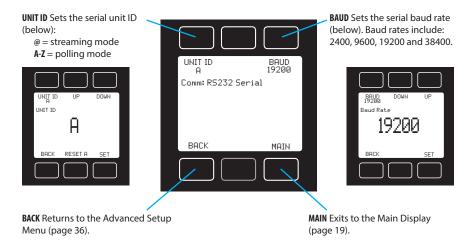
Sensor Setup

The Sensor Setup Menu contains advanced settings that govern how the flow and pressure sensors report their data.

Advanced Setup | Sensor Setup

The deadband threshold (**DISPLAY AS ZERO**) is the value below which the flow controller displays all flow readings as "0" (no flow). This function also applies to gauge pressure readings when using the optional barometer. By default, flow controllers ship with a deadband value of 0.25%, so on a 20-slpm instrument, all readings below 0.05 slpm would display as 0 slpm.

Note: Deadband settings do not affect the values reported in the serial data frame.


The **AVERAGING** button opens a submenu for adjusting the flow and pressure averaging, which are changed independently. Values roughly correspond to the time constant (in milliseconds) of the averaged values. Higher numbers generate a greater smoothing effect on rapidly fluctuating readings (max 255 ms).

Navigating and Customizing Your Flow Controller

Configuring Your Flow Controller for Serial Communications

You can operate the flow controller remotely via its top connector for easy streaming and logging of all data. Before connecting the flow controller to a computer, ensure that it is ready to communicate with your PC by checking the options in the **COMM SETUP** menu.

Advanced Setup | Comm Setup

Unit ID

The unit ID is the identifier that a computer uses to distinguish your flow controller from other Alicat devices when it is connected to a network. Using the unit ID letters **A-Z**, you can connect up to 26 devices to a computer at the same time via a single COM port. This is called polling mode (page 40). Unit ID changes take effect when you select **SET**.

If you select @ as the Unit ID, the flow controller enters streaming mode when you exit the menu (see page 40).

Baud Rate

Baud rate is the speed at which digital devices transfer information. The flow controller has a default baud rate of 19200 baud (bits per second). If your computer or software uses a different baud rate, you must change the flow controller baud rate in the **BAUD** menu to match them both. Alternatively, you can change your PC's baud rate in Device Manager. Baud rate changes take effect once you press **SET**, but you may need to restart your software.

Connecting your flow meter to a computer allows you to log the data that it generates. The flow meter communicates digitally through its communications connector and cable using a real or virtual COM port on your PC. This section of the manual shows you how to operate the flow meter using ASCII commands.

Establishing Serial Communications

After connecting your flow controller using a communications cable, you will need to establish serial communications through a real or virtual COM port on your computer or PLC.

• Confirm that your mass flow controller is ready to accept new setpoints serially by selecting **MENU > CONTROL > ADV CONTROL > SETPT SOURCE**. The setpoint source should be set to **Serial/Front Panel**.

- If you have connected your device to a serial port, note its COM port number. This can be found in Windows Device Manager.
- If you have used a USB cable to connect your device to your computer, the computer in most cases will recognize your Alicat as a virtual COM port. If it does not, download the appropriate USB device driver at alicat.com/drivers and note the COM port number as found in Windows Device Manager.

Serial Terminal Application

Alicat's Serial Terminal is a preconfigured program for serial communications that functions much like the older HyperTerminal program of Windows. Download Serial Terminal for free at alicat.com/drivers. Once downloaded, simply run SerialTerminal.exe. Enter the COM port number to which your device is connected and the baud rate of the flow controller. The default baud rate is 19200, but this is adjustable by entering the SERIAL COMM menu on your flow meter: MENU > ADV SETUP > COMM SETUP > BAUD (page 38)

Serial Streaming vs Polling

Note: In what follows, <CR> indicates an ASCII carriage return (decimal 13, hexadecimal D). Serial commands are not case-sensitive.

Polling Mode

Your flow controller was shipped to you in polling mode with a unit ID of A, unless requested otherwise. Polling the flow controller returns a single line of data each time you request it. To poll your flow controller, simply enter its unit ID.

Poll the device:	[unit ID] <cr></cr>
Example:	a <cr> (polls unit A)</cr>

You can change the unit ID of a polling device by typing:

Change the unit ID:	[current unit ID]@=[desired unit ID] <cr></cr>
Example:	a@=b <cr> (changes unit A to unit B)</cr>

You can also do this via the flow controller menu: **MENU** > **ADV SETUP** > **COMM SETUP** > **UNIT ID** (page 38). Valid unit IDs are letters A-Z, and up to 26 devices may be connected at any one time, as long as each unit ID is unique.

Streaming Mode

In streaming mode, your flow controller continuously sends a line of live data at regular intervals without your having to request the data each time. Only one unit on a given COM port may be in streaming mode at a time.

To put your flow controller into streaming mode, type:

Begin streaming: [unit ID]@=@<CR>

This is equivalent to changing the unit ID to "@". To take the flow controller out of streaming mode, assign it a unit ID by typing:

Stop streaming:	<pre>@@=[desired unit ID]<cr></cr></pre>		
Example:	@@=a <cr></cr>	(stops and assigns unit ID of A)	

When sending a command to a flow controller in streaming mode, the flow of data will not stop while the user is typing. This may make the commands you type unreadable. If the device does not receive a valid command, it will ignore it. If in doubt, simply hit **<CR>** and start again.

Note: The default streaming interval is 50 ms, but this can be increased by changing Register 91 while the device is in polling mode:

Set streaming interval:[unit ID] w91=[number of milliseconds]<CR>Example:aw91=500<CR> (streams new data every 500 ms)

Taring Serially

Before collecting flow data, be sure to tare your flow controller. This can be accomplished serially through two separate commands. Taring flow sets the zero flow reading and must be done when no flow is passing through the flow controller:

Tare flow:	[unit ID] v<cr></cr>
Example:	av <cr> (sets flow reading to zero)</cr>

For devices equipped with a barometer, the second tare aligns the internal absolute pressure sensor with the current barometer reading and must be done with the flow meter open to atmosphere:

Tare absolute pressure	[unit ID] pc<	CR>
Example:	apc <cr></cr>	(aligns internal pressure to barometer)

Collecting Flow Data Serially

Collect live flow data by typing the [unit ID] **<CR>** command or by setting your flow controller to streaming. Each line of data for live flow measurements appears in the format below, but Unit ID is not present in streaming mode.

	A +1	3.60	+24	.38	+16	5.67	+15	.44	+15.	44	Air	
	Absc Pres			v	olun Flo	 netric ow	(Ma	ass)	Setp	oint	Gas	
Uni	t ID	Te	empe	eratur	e		FIC	w				

Single spaces separate each parameter, and each value is displayed in the chosen device engineering units, which may differ from the engineering units visible on the flow controller display (see "Choosing Engineering Units" on page 20). You can query the engineering units of the instant data frame by typing:

Query live data info:	[unit ID] ??d*<cr></cr>
Example:	a??d* <cr> (returns the data frame descriptions)</cr>

Additional columns, including status codes (see "Status Messages" on page 8), may be present to the right of the gas label column. The Unit ID appears in the data frame only when the flow controller is in polling mode.

Commanding a New Setpoint Serially

Before attempting to send setpoints to your mass flow controller serially, confirm that its setpoint source is set to **Serial/Front Panel** by selecting **MENU** > **CONTROL** > **ADV CONTROL** > **SETPT SOURCE**.

There are two ways to command a new setpoint over a serial connection, as described below. In either of these methods, the data frame returns the new setpoint value when it has been accepted as a valid setpoint.

Sending Serial Setpoints as Floating Point Numbers

In this method, you send the desired setpoint value as a floating point number:

Command new setpoint:	
Example:	

as[setpoint as floating point number]<CR> as15.44<CR> (setpoint of +15.44 slpm)

When using a bidirectional mass flow controller, negative setpoints are sent by adding the minus sign (-):

Example: as-15.44<CR> (setpoint of -15.44 slpm)

Sending Serial Setpoints as Integers in Reference to Full Scale In this method, your controller's full scale range is represented by a value of 64000, and a zero setpoint is represented by 0. To calculate your intended setpoint, use the following formula:

Integer value = 64000 x [desired setpoint] / [device full scale]

A desired setpoint of +15.44 slpm on a 20-slpm mass flow controller is calculated as $64000 \times 15.44 / 20.00 = 49408$. The command to assign the setpoint based on this integer value is:

Command new setpoint:	a[setpoint as integer where 64000 is full scale] < CR >
Example:	a49408 <cr> (setpoint of 15.44 slpm)</cr>

When using a bidirectional mass flow controller, 0 represents -100% of full scale, 32000 represents 0, and 64000 represents +100% of full scale. Use the following formule to calculate the integer value:

Integer value = 64000 x [desired setpoint + full scale] / [device full scale x 2]

A desired setpoint of +15.44 slpm on a 20-slpm bidirectional mass flow controller is calculated as $64000 \times (15.44 + 20.00) / 40.00 = 56704$. A desired setpoint of -15.44 slpm on the same mass flow controller is calculated as $64000 \times (-15.44 + 20.00) / 40.00 = 7296$.

Quick Serial Command Guide

Note: Serial commands are not case-sensitive. For simplicity, we assume that the unit ID of the flow controller is A in the listing that follows.

Change the unit ID: Tare flow:	[current unit ID]@=[desired unit ID] <cr> av<cr></cr></cr>
Tare abs. pressure with baro:	apc <cr> (optional)</cr>
Poll the live data frame: Begin streaming data: Stop streaming data: Set streaming interval:	a <cr> [unit ID]@=@<cr> @@=[desired unit ID]<cr> aw91=[number of milliseconds]<cr></cr></cr></cr></cr>
Command new setpoint: Command new setpoint: Hold valve(s) at current pos.: Hold valve(s) closed: Cancel valve hold:	as[setpoint as floating point number] <cr> a[setpoint as integer where 64000 is full scale]<cr> ahp<cr> ahc<cr> ac<cr></cr></cr></cr></cr></cr>
	-)) - * . CD.

Query gas list info: Choose a different gas: Create a COMPOSER mix: a??g*<CR> ag[Gas Number]<CR>

agm [Mix Name] [Mix Number] [Gas1 %] [Gas1 Number] [Gas2 %] [Gas2 Number]...<CR> Delete a COMPOSER mix: agd [Mix Number]<CR>

a??d* <cr> a??m*<cr> a??m9<cr></cr></cr></cr>	
al <cr> au<cr></cr></cr>	

If you have need of more advanced serial communication commands, please contact Alicat.

Using Gas Select and COMPOSER Serially

To reconfigure your flow controller to flow a different gas, look up its Gas Number (see "Numerical List of Gases" on page 57). Then type:

Choose a gas:	[unit ID] g [Gas Number] <cr></cr>
Example1:	ag8<cr></cr> (reconfigures to flow nitrogen)
Example2:	ag206 <cr> (reconfigures to flow P-10)</cr>

COMPOSER user mixes are selected in the same way. All COMPOSER gas mixes have a Gas Number between 236 and 255.

Choose a user mix:	[unit ID] g [Gas N	umber] <cr></cr>
Example:	ag255 <cr></cr>	(reconfigures for user mix 255)

Defining a new COMPOSER gas mix is faster using serial commands than using the front panel. The basic formula for this is:

[unit ID]gm [Mix Name] [Mix Number] [Gas1 %] [Gas1 Number] [Gas2 %] [Gas2 Number]...<CR>

» [Mix Name] Use a maximum of 6 letters (upper case and/or lower case), numbers and symbols (space, period or hyphen only).

» [Mix Number] Choose a number from 236 to 255. If a user mix with that number already exists, it will be overwritten. Use the number 0 to assign the next available number to your new gas. *Note: COMPOSER gas numbers are assigned in descending order from 255.*

» [Gas1 %] [Gas1 Number]... For each constituent gas, enter its molar percentage (using up to 2 decimal places) and then its Gas Number (page 57). You must have at least 2—but no more than 5—gases in your COMPOSER mix.

After creating your COMPOSER mix, your flow controller will confirm the new gas:

Example1: Create a mix of 71.35% helium, 19.25% nitrogen and 9.4% carbon dioxide as Gas 252, called "MyGas1".

Response: A 252 71.35% He 19.25% N2 9.40% CO2

Example2: Create a mix of 93% methane, 3% ethane, 1% propane, 2% nitrogen and 1% carbon dioxide, using the next available gas number, called "MyGas2".

agm MyGas2 0 <u>93 2</u> <u>3 5</u> <u>1 12</u> <u>2 8 1 4</u><CR>

Response: A 253 93.00% CH4 3.00% C2H6 1.00% C3H8 2.00% N2 1.00% C02

Note: The sum of all gas constituent percentages must equal 100.00%.

Troubleshooting Your Flow Controller

If you run into any trouble with your Alicat's installation or operation, please get in touch with us by phone, chat or email. You'll also find help on our website alicat.com and in the pages that follow.

General Use

- Issue: My Alicat does not turn on or is weak.
- Action: Check power and ground connections. Please reference the technical specifications to ensure you have the proper power for your model.
- Issue: The buttons do not work, and the screen shows LCK.
- Action: The flow controller buttons were locked out via a serial command. Press and hold all four outer buttons to unlock the interface.
- *Issue:* I can't read the display easily.
- Action: During the day, you can increase the visibility of the display by increasing the contrast (MENU > ADV SETUP > DISP SETUP > LCD CONTRAST). If you are working under low-light conditions, push the large Alicat button (located below the display) to turn on the backlight.

Issue: How often do I need to calibrate my Alicat?

- Action: Alicat recommends annual recalibrations. Check your flow controller's last calibration date by selecting MENU > ABOUT > DEVICE INFO. If it is time to recalibrate, request a recalibration at alicat.com/service.
- Issue: I dropped my Alicat. Is it ok? Do I need to recalibrate?
- Action: If it turns on and appears to respond normally, then it is probably ok. It may or may not need a recalibration. Compare it against a knowngood flow standard. If it checks out, keep using it, but tell us about the drop at your next annual recalibration so we can check it out for you.

Temperature Readings

- *Issue:* How can I see temperature in different units?
- Action: From the Main Display, press the button above the temperature reading twice, and then choose **Set button eng units**. Use the **UP/DOWN** keys to move the > cursor to the desired unit, and then press **SET**.

On portable decives, charging the device may also reslove the issue.

Pressure Readings

Issue: How can I see pressure in different units?

Action: From the Main Display, press the button above the pressure reading twice, and then choose **Set button eng units**. Use the **UP/DOWN** keys to move the > cursor to the desired unit, and then press **SET**.

Troubleshooting Your Flow Controller

Flow Readings

Issue: How can I see flow in different units?

- Action: From the Main Display, press the button below the flow reading twice, and then choose **Set button eng units**. Use the **UP/DOWN** keys to move the > cursor to the desired unit, and then press **SET**.
- *Issue:* The live flow readings won't settle down.
- Action: The flow controller is very fast, so it can detect subtle variations in flow that may go unnoticed by your other flow devices. This sensitivity can help detect problems with pumps or flow controllers. You can lessen this sensitivity by decreasing the flow averaging (press MENU > ADV SETUP > SENSOR SETUP > FLOW AVG
- Issue: My flow readings are negative.
- Action: Command a zero setpoint to see if the flow returns to 0 after 1.2 seconds. Under conditions of no flow, a negative flow reading can indicate a poor tare. Ensure that the flow controller has no flow passing through it, and select **TARE FLOW** from the Main Display to give it a fresh tare.
- Issue: Does the Alicat work if it is laying down? Will it be accurate?
- Action: Yes to both! The flow controller is internally compensated for any changes in orientation, so you can use it sideways, on its back, or upside-down. S and QS-series devices should be tared again after changing their orientation.
- Issue: Can I put the Alicat on top of a vibrating device? Will it be accurate?
- *Action:* Yes, and yes! The flow controller is internally compensated for any changes in orientation, including rapid vibrations. Noise will increase if the flow meter/controller is vibrating.
- *Issue:* My controller does not agree with another meter I have in line.
- Action: Check the STP or NTP settings (MENU > BASIC CONFIG > STP/NTP) to ensure that your standardized temperature and pressure references match those of your other flow calibrator. Also check that your device's Gas Select is set to the right gas or mixture.
- *Issue:* My flow readings won't change when flow changes.
- Action: If your flow readings won't change regardless of actual flow, your flow sensor may be damaged. Please contact Alicat to troubleshoot.

Issue: Can I use the Alicat with other gases?

Action: Yes! Your flow controller is designed specifically to work with many different gases. Gas Select (MENU > BASIC CONFIG > GAS) includes up to 130 preloaded gases and gas mixes, or you can define your own using COMPOSER. If your desired gas is not listed, please contact Alicat to ensure compatibility.

Troubleshooting Your Flow Controller

Serial Communications

Issue: I can't communicate to the Alicat when it is connected to my PC.

Action: Make sure the COM number matches the one your software is using to connect to the flow controller. Check the flow controller unit ID (MENU > ADV SETUP > COMM SETUP > UNIT ID) to make sure you are addressing it properly with your serial commands. Make sure the baud rate your software and Com Port require is the one your flow controller is using (MENU > ADV SETUP > COMM SETUP > COMM SETUP > BAUD).

Still experiencing issues?

Issue: None of the above helped.

Action: We're here to help! Give us a call (1-888-290-6060) during our normal business hours (8am-5pm Mountain Standard Time) to get help from a friendly and capable applications engineer. Or, go to alicat.com and start a live chat. Is it after hours? Send an email to info@alicat.com, and we'll get in touch with you as soon as we can.

Additionally, we our troubleshooting page online might be more up to date than the manual. Please visit alicat.com/support.

Maintenance and Recalibration

Cleaning

Your flow controller requires no periodic cleaning, provided that it has been flowing clean, dry gas. If necessary, the outside of the device can be cleaned with a soft dry cloth.

If you suspect that debris or other foreign material has entered your device, do not take apart the flow body to clean it, as this will negate its NIST-traceable calibration. Please contact Alicat for cleaning.

Recalibration

The recommended period for recalibration is once every year. A label located on the back of the device lists the most recent calibration date. This date is also stored inside your flow controller and is visible by selecting **MENU** > **ABOUT** > **DEVICE INFO**.

When it is time for your flow controller's annual recalibration, contact us by phone or live chat to set it up. Or, send an email to service@alicat.com, or fill out the form at alicat.com/service. We'll ask for your device's serial number and your contact information and send you an email with instructions for returning the flow controller to us.

Replacement Accessories

Please contact Alicat to order replacements for any accessories listed on page 63:

For repair, recalibration or recycling of this product contact:

Alicat Scientific, Inc.

service@alicat.com • alicat.com 7641 N Business Park Drive Tucson, AZ 85743 USA 1-888-290-6060

Gas Properties Data

PURE NON	PURE NON-CORROSIVE	E GASES		25°C			0°C	
Gas Number	Short Name	Long Name	Absolute Viscosity*	Density** 14.696 PSIA	Compressibilty 14.696 PSIA	Absolute Viscosity	Density 14.696 PSIA	Compressibilty 14.696 PSIA
14	C2H2	Acetylene	104.44800	1.07200	0.9928000	97.374	1.1728	0.9905
0	Air	Air	184.89890	1.18402	0.9996967	172.574	1.2930	0.9994
1	Ar	Argon	226.23990	1.63387	0.9993656	210.167	1.7840	0.9991
16	i-C4H10	i-Butane	74.97846	2.44028	0.9735331	68.759	2.6887	0.9645
13	n-C4H10	n-Butane	74.05358	2.44930	0.9699493	67.690	2.7037	0.9591
4	C02	Carbon Dioxide	149.31840	1.80798	0.9949545	137.107	1.9768	0.9933
З	CO	Carbon Monoxide	176.49330	1.14530	0.9996406	165.151	1.2505	0.9993
60	D2	Deuterium	126.59836	0.16455	1.0005970	119.196	0.1796	1.0006
5	C2H6	Ethane	93.54117	1.23846	0.9923987	86.129	1.3550	0.9901
15	C2H4	Ethylene (Ethene)	103.18390	1.15329	0.9942550	94.697	1.2611	0.9925
7	He	Helium	198.45610	0.16353	1.0004720	186.945	0.1785	1.0005
6	H2	Hydrogen	89.15355	0.08235	1.0005940	83.969	0.0899	1.0006
17	Kr	Krypton	251.32490	3.43229	0.9979266	232.193	3.7490	0.9972
2	CH4	Methane	110.75950	0.65688	0.9982472	102.550	0.7175	0.9976
10	Ne	Neon	311.12640	0.82442	1.0004810	293.822	0.8999	1.0005
8	N2	Nitrogen	178.04740	1.14525	0.9998016	166.287	1.2504	0.9995
6	N2O	Nitrous Oxide	148.41240	1.80888	0.9945327	136.310	1.9779	0.9928
11	02	Oxygen	205.50210	1.30879	0.9993530	191.433	1.4290	0.9990
12	C3H8	Propane	81.46309	1.83204	0.9838054	74.692	2.0105	0.9785
19	SF6	Sulfur Hexafluoride	153.53200	6.03832	0.9886681	140.890	6.6162	0.9849
18	Xe	Xenon	229.84830	5.39502	0.9947117	212.157	5.8980	0.9932
*in microp	*in micropoise (1 Poise	e = gram / (cm) (sec))	er	Refe	Reference: NIST REFPROP 9 Database	PROP 9 Data	abase	

PURE CORROSIVES*	ROSIVES*			25°C			0°C	
Gas	Short		Absolute	Density**	Compressibilty	Absolute	Density	Compressibilty
Number	Name	Long Name	Viscosity*	14.696 PSIA	14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
32	NH3	Ammonia	100.92580	0.70352	0.9894555	91.930	0.7715	0.9848612
80	1Butene	Butylene (1-Butene)	81.62541	2.35906	0.9721251	74.354	2.6036	0.9614456
81	cButene	Cis-Butene (cis-2-butene)	79.96139	2.36608	0.9692405	Liquid	Liquid	Liquid
82	iButene	lso-Butene	80.84175	2.35897	0.9721626	73.640	2.6038	0.9613501
83	tButene	Trans-Butene	80.28018	2.36596	0.9692902	Liquid	Liquid	Liquid
84	COS	Carbonyl Sulfide	124.09600	2.48322	0.9888443	113.127	2.7202	0.985328
33	CI2	Chlorine	134.56600	2.93506	0.9874470	125.464	3.1635	0.98407
85	CH3OCH3	Dimethylether	90.99451	1.91822	0.9816453	82.865	2.1090	0.9745473
34	H2S	Hydrogen Sulfide (H2S)	123.86890	1.40376	0.9923556	112.982	1.5361	0.9898858
31	NF3	NF3 (Nitrogen Trifluoride)	175.42500	2.91339	0.9963859	162.426	3.1840	0.9951506
30	NO	NO (Nitric Oxide)	190.05950	1.22672	0.9997970	176.754	1.3394	0.9995317
36	C3H6	Propylene (Propylene)	85.59895	1.74509	0.9856064	78.129	1.9139	0.9809373
86	SiH4	Silane (SiH4)	115.94400	1.32003	0.9945000	107.053	1.4433	0.99282
35	S02	Sulfur Dioxide	127.83100	2.66427	0.9828407	116.717	2.9312	0.9750866
*Pure Col	*Pure Corrosive gases	are only available on S-Series instruments that are compatible with these gases.	nstruments t	hat are compa	itible with these g	lases.		
*in microp	*in micropoise (1 Poise	= gram / (cm) (sec))	**Grams/Liter		Reference: NIST REFPROP 9 Database	REFPROP 9 C	Database	

REFRIGERANTS	ANTS			25°C			0°C	
Gas	Short		Absolute	Density**	Compressibilty	Absolute	Density	Compressibilty
Number	Name	сопд маше	Viscosity*	14.696 PSIA	14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
100	R-11	Trichlorofluoromethane	101.60480	5.82358	0.9641448	Liquid	Liguid	Liquid
101	R-115	Chloropentafluoroethane	125.14780	6.43293	0.9814628	114.891	7.0666	0.9752287
102	R-116	Hexafluoroethane	137.81730	5.70097	0.9895011	126.635	6.2458	0.9858448
103	R-124	Chlorotetrafluoroethane	115.93110	5.72821	0.9738286	105.808	6.3175	0.963807
104	R-125	Pentafliuoroethane	129.61740	4.98169	0.9847599	118.793	5.4689	0.979137
105	R-134A	Tetrafluoroethane	118.18820	4.25784	0.9794810	108.311	4.6863	0.9713825
106	R-14	Tetrafluoromethane	172.44680	3.61084	0.9962553	159.688	3.9467	0.9948964
107	R142B	Chlorodifluoroethane	104.20190	4.21632	0.9742264	95.092	4.6509	0.9640371
108	R-143A	Trifluoroethane	110.86600	3.49451	0.9830011	101.344	3.8394	0.9765755
109	R-152A	Difluoroethane	100.81320	2.75903	0.9785245	91.952	3.0377	0.9701025
110	R-22	NO (Nitric Oxide)	190.05950	1.22672	0.9997970	176.754	1.3394	0.9995317
111	R-23	Propylene (Propylene)	85.59895	1.74509	0.9856064	78.129	1.9139	0.9809373
112	R-32	Silane (SiH4)	115.94400	1.32003	0.9945000	107.053	1.4433	0.99282
113	RC-318	Sulfur Dioxide	127.83100	2.66427	0.9828407	116.717	2.9312	0.9750866
114	R-404A	44% R-125/4% R-134A/ 52% R-143A	120.30982	4.18002	0.98336342	111.584	4.5932	0.9770889
115	R-407C	23% R-32/25% R-125/ 52% R-143A	123.55369	3.95268	0.9826672	112.698	4.3427	0.9762849
116	R-410A	50% R-32/50% R-125	130.24384	3.56538	0.9861780	122.417	3.9118	0.9811061
117	R-507A	50% R-125/50% R-143A	121.18202	4.23867	0.9838805	112.445	4.6573	0.9774207
*Refrigera	*Refrigerant gases are	e only available on S-Series instruments that are compatible with these gases.	uments that	are compatibl	e with these gase	is.		

WELDING GASES	GASES			25°C			0°C	
Gas	Short		Absolute	Density**	Compressibilty	Absolute	Density	Compressibilty
Number	Name	Long Name	Viscosity*	14.696 PSIA	14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
23	C-2	2% CO2 / 98% Ar	224.71480	1.63727	0.9993165	208.673	1.7877	0.998993
22	C-8	8% CO2 / 92% Ar	220.13520	1.64749	0.9991624	204.199	1.7989	0.9987964
21	C-10	10% CO2 / 90% Ar	218.60260	1.65091	0.9991086	202.706	1.8027	0.9987278
140	C-15	15% CO2 / 85% Ar	214.74960	1.65945	0.9989687	198.960	1.8121	0.9985493
141	C-20	20% CO2 / 80% Ar	210.86960	1.66800	0.9988210	195.198	1.8215	0.9983605
20	C-25	25% CO2 / 75% Ar	206.97630	1.67658	0.9986652	191.436	1.8309	0.9981609
142	C-50	50% CO2 / 50% Ar	187.53160	1.71972	0.9977484	172.843	1.8786	0.9969777
24	C-75	75% CO2 / 25% Ar	168.22500	1.76344	0.9965484	154.670	1.9271	0.995401
25	He-25	25% He / 75% Ar	231.60563	1.26598	0.9996422	216.008	1.3814	0.9999341
143	He-50	50% He / 50% Ar	236.15149	0.89829	0.9999188	220.464	0.9800	1.00039
26	He-75	75% He / 25% Ar	234.68601	0.53081	1.0001954	216.937	0.5792	1.000571
144	He-90	90% He / 10% Ar	222.14566	0.31041	1.0003614	205.813	0.3388	1.00057
27	A1025	90% He / 7.5% Ar / 2.5% CO2	214.97608	0.31460	1.0002511	201.175	0.3433	1.000556
28	Star29	Stargon CS 90% Ar /	219.79340	1.64099	0.9991638	203.890	1.7918	0.998798
) I	5	8% CO2 / 2% O2		N N N N N N N N N N N N N N N N N N N	-		2	
*in micro	*in micropoise (1 Poise	= gram / (cm) (sec))	**Grams/Liter		Reference: NIST REFPROP 9 Database	REFPROP 9	Database	

BIOREACT	BIOREACTOR GASES			25°C			0°C	
Gas	Short	Long Name	Absolute	Density**	Compressibilty	Absolute	Density	Compressibilty
Number	Name		Viscosity*	14.696 PSIA	14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
145	Bio-5M	5% CH4 / 95% CO2	148.46635	1.75026	0.9951191	136.268	1.9134	0.9935816
146	Bio-10M	10% CH4 / 90% CO2	147.54809	1.69254	0.9952838	135.383	1.8500	0.993893
147	Bio-15M	15% CH4 / 85% CO2	146.55859	1.63484	0.9954484	134.447	1.7867	0.9941932
148	Bio-20M	20% CH4 / 80% CO2	145.49238	1.57716	0.9956130	133.457	1.7235	0.994482
149	Bio-25M	25% CH4 / 75% CO2	144.34349	1.51950	0.9957777	132.407	1.6603	0.9947594
150	Bio-30M	30% CH4 / 70% CO2	143.10541	1.46186	0.9959423	131.290	1.5971	0.9950255
151	Bio-35M	35% CH4 / 65% CO2	141.77101	1.40424	0.9961069	130.102	1.5340	0.9952803
152	Bio-40M	40% CH4 / 60% CO2	140.33250	1.34664	0.9962716	128.834	1.4710	0.9955239
153	Bio-45M	45% CH4 / 55% CO2	138.78134	1.28905	0.9964362	127.478	1.4080	0.9957564
154	Bio-50M	50% CH4 / 50% CO2	137.10815	1.23149	0.9966009	126.025	1.3450	0.9959779
155	Bio-55M	55% CH4 / 45% CO2	135.30261	1.17394	0.9967655	124.462	1.2821	0.9961886
156	Bio-60M	60% CH4 /40% CO2	133.35338	1.11642	0.9969301	122.779	1.2193	0.9963885
157	Bio-65M	65% CH4 /35% CO2	131.24791	1.05891	0.9970948	120.959	1.1564	0.9965779
158	Bio-70M	70% CH4 / 30% CO2	128.97238	1.00142	0.9972594	118.987	1.0936	0.9967567
159	Bio-75M	75% CH4 / 25% CO2	126.51146	0.94395	0.9974240	116.842	1.0309	0.9969251
160	Bio-80M	80% CH4 / 20% CO2	123.84817	0.88650	0.9975887	114.501	0.9681	0.9970832
161	Bio-85M	85% CH4 / 15% CO2	1 20.96360	0.82907	0.9977533	111.938	0.9054	0.9972309
162	Bio-90M	90% CH4 / 10% CO2	117.83674	0.77166	0.9979179	109.119	0.8427	0.9973684
163	Bio-95M	95% CH4 / 5% CO2	114.44413	0.71426	0.9980826	106.005	0.7801	0.9974957
*in micro	*in micropoise (1 Poise	= gram / (cm) (sec))	**Grams/Liter	æ	Reference: NIST REFPROP 9 Database	EFPROP 9	Database	

BREATHING GASES	G GASES			25°C			0°C	
Gas Number	Short	Long Name	Absolute Viccocity*	Density**	Compressibility	Absolute	Density 14 606 PCIA	Compressibilty 14 606 PCIA
164	EAN-32	32% O2 / 68% N2	186.86315	1.19757	0.9996580	174.925	1.3075	0.9993715
165	EAN	36% O2 / 64% N2	187.96313	1.20411	0.9996401	175.963	1.3147	0.9993508
166	EAN-40	40% O2 / 60% N2	189.06268	1.21065	0.9996222	176.993	1.3218	0.9993302
167	HeOx-20	20% O2 / 80% He	217.88794	0.39237	1.0002482	204.175	0.4281	1.000593
168	HeOx-21	21% O2 / 79% He	218.15984	0.40382	1.0002370	204.395	0.4406	1.000591
169	HeOx-30	30% O2 / 70% He	219.24536	0.50683	1.0001363	205.140	0.5530	1.000565
170	HeOx-40	40% O2 / 60% He	218.59913	0.62132	1.0000244	204.307	0.6779	1.000502
171	HeOx-50	50% O2 / 50% He	216.95310	0.73583	0.9999125	202.592	0.8028	1.000401
172	HeOx-60	60% O2 / 40% He	214.82626	0.85037	0.9998006	200.467	0.9278	1.000257
173	HeOx-80	80% O2 / 20% He	210.11726	1.07952	0.9995768	195.872	1.1781	0.9998019
174	HeOx-99	99% O2 / 1% He	205.72469	1.29731	0.9993642	191.646	1.4165	0.9990796
175	EA-40	Enriched Air-40% O2	189.42518	1.21429	0.9996177	177.396	1.3258	0.9993261
176	EA-60	Enriched Air-60% O2	194.79159	1.24578	0.9995295	182.261	1.3602	0.9992266
177	EA-80	Enriched Air-80% O2	200.15060	1.27727	0.9994412	186.937	1.3946	0.9991288
178	Metabol	Metabolic Exhalant (16% O2 / 78.04% N2 / 5% CO2 / 0.96% Ar)	180.95936	1.20909	0.9994833	170.051	1.3200	0.9992587
*in microp	*in micropoise (1 Poise =	: gram / (cm) (sec))	**Grams/Liter		Reference: NIST REFPROP 9 Database	EFPROP 9 [Database	

	FUEL GASES	SES			25°C			0°C	
Niscosity 14.696 PSIA 14.696 PSIA Niscosity 14.696 PSIA Niscosity 14.696 PSIA $CO2 + 11\% CH4$ 155.64744 0.79774 0.9989315 144.565 0.8704 $CO2 + 1\% CH4$ 155.64744 0.79774 0.99991255 144.565 0.8704 $F3\% CH4$ 133.63682 0.56024 0.99912255 103.189 0.6111 $F3\% CH4$ 133.63682 0.56024 0.99912255 103.189 0.7722 $8/2\% N2/1\% CO2$ 111.77027 0.70709 0.99806444 103.027 0.7534 $8/2\% N2/1\% CO2$ 111.49608 0.68980 0.9993603 115.045 0.6589 $0.7\% CO2$ 111.49608 0.68980 0.9993603 115.045 0.7534 $0.7\% CO2$ 111.49608 0.68980 0.9993603 115.045 0.6589 $0.7\% CO2$ 111.49608 0.68980 0.9993603 115.045 0.5534 $0.7\% CO2$ 1141.72100 0.34787 10.0005210 133.088 0.3797 $\delta N2$ 123.680	Gas		Long Name	Absolute	<u> </u>		Absolute	Density	Compressibilty
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Number			Viscosity			Viscosity	14.696 PSIA	14.696 PSIA
CO2+7%CH4 151.98915 0.43715 1.0001064 142.249 0.4771 CO2+1%CH4 147.33686 0.56024 0.9991225 136.493 0.61111 $\pm3\%$ CH4 133.63882 0.54825 1.0003901 125.388 0.2709 8% Z%N2/1%CO2 111.77027 0.70709 0.9980544 103.027 0.7534 $\%$ Z%N2/1%CO2 111.55770 0.69061 0.99805410 103.027 0.7534 $\%$ Z%CJH8/0.1% 111.49608 0.689800 0.9980410 103.027 0.7534 $\%$ Z%CJH4 12.1.45608 0.689800 0.9980541 103.027 0.7534 $\%$ Z%CJH4 12.3.68517 0.44281 0.9980503 115.045 0.7534 $\%$ Z%CJH5 141.72100 0.34787 1.0001804 168.664 0.5536 $\%$ Z%CJH5 141.72100 0.34787 1.0001804 168.664 0.53377 $\%$ Z%CD5 18.04518 0.3835781 1.68.664 0.53367 2.0128 $\%$ Z%CD5 18.0451 0.3835781 1.88.588 0.3797 2.0128 $\%$ Z%CD5 81.41291 1.8312	185	Syn Gas-1	40% H2 + 29% CO + 20% CO2 + 11% CH4	155.6474		0.9989315	144.565	0.8704	0.9992763
.CO2+1%CH4 147.33686 0.56024 0.9991225 136.493 0.6111 $+3\%$ CH4 133.63682 0.24825 1.0003901 125.388 0.2709 $8h/2\%$ NCH4 133.63682 0.24825 1.0003901 125.388 0.2709 $8h/2\%$ NCH4 133.63682 0.24825 1.0003901 125.388 0.2709 $\%$ N2/1%CO2 111.55570 0.69061 0.9980544 103.027 0.7534 $\%$ N2/1%CO2 111.49608 0.68980 0.99805410 103.027 0.7534 $\%$ N2/1%CO2 111.55570 0.69091 0.99805410 103.027 0.7534 0.7% CO2 111.49608 0.68980 0.9993603 115.045 0.5536 $\%$ N2 123.68517 0.44281 0.9993603 115.045 0.5536 $\%$ N2 141.72100 0.34787 1.0001804 168.664 0.5356 $\%$ N2 141.72100 0.34787 1.0001804 168.664 0.5356 $\%$ N2 141.72100 0.34787 1.0001322 14.933 2.0128 $\%$ N2 141.57820 0.5832927 74.9	186	Syn Gas-2	64% H2 + 28% CO + 1% CO2 + 7% CH4	151.9891		1.0001064	142.249	0.4771	1.000263
+3%GH4 133.63682 0.24825 1.0003901 125.388 0.2709 $8/2%$ N2/1%CO2 111.77027 0.70709 0.9979255 103.189 0.7722 $%$ N2/1%CO2 111.55570 0.69061 0.9980544 103.027 0.7543 $%$ N2/1%CO2 111.49608 0.68980 0.9980410 103.027 0.7534 $0.7%$ CO2 111.49608 0.68980 0.9980410 103.027 0.7534 $0.7%$ CO2 111.49608 0.69980 0.9980410 102.980 0.7534 $0.7%$ CO2 111.49608 0.64980 0.698980 0.9993603 115.045 0.5589 $%$ CO 1141.72100 0.34787 1.0001804 168.664 0.5356 $%$ N2 180.4619 0.49078 1.0001804 168.664 0.5356 $%$ N2 181.45829 1.83428 0.9836781 74.933 2.0128 $%$ CHH 81.45829 1.83428 0.9835781 74.933 2.0128 $%$ CHH 81.45829 1.83428 0.9835781 74.933 2.0128 $%$ CHH 81.45829 1.83428	187	Syn Gas-3	70% H2 + 4% CO + 25% CO2 + 1% CH4	147.3368		0.9991225	136.493	0.6111	0.9997559
# 2% M2 / 1% CO2 111.77027 0.70709 0.9980544 103.027 0.7723 $%$ M2 / 1% CO2 111.5570 0.69061 0.9980544 103.027 0.7534 $%$ M2 / 1% CO2 111.5570 0.69061 0.9980544 103.027 0.7534 $0.7%$ CO2 111.49608 0.68980 0.9980410 102.980 0.7534 $0.7%$ CO2 111.49608 0.68980 0.9993603 115.045 0.55369 $0.7%$ CO15% C2H4 123.68517 0.44081 0.9935032 115.045 0.55369 $%$ CO 5% C2H4 123.68517 0.44078 1.0001804 168.664 0.5356 $%$ C2H6 $0.44%$ 81.45829 1.83428 0.9835781 123.088 0.3797 $%$ C2H1 0 81.41397 1.83428 0.9835781 74.933 2.0128 $%$ C2H1 0 81.45829 1.83428 0.9835781 74.933 2.0343 $%$ C2H0 0 81.45829 1.83428 0.9835781 74.934 2.0343 $%$ C2H0 0 81.45829 1.83428 0.983	188	Syn Gas-4	83% H2+14%CO+3% CH4	133.6368	_	1.0003901	125.388	0.2709	1.000509
%N2/1%CO2 111.55570 0.69061 0.9980544 103.027 0.7543 $0.2%$ C3H8/0.1% 111.49608 0.68980 0.9980410 103.027 0.7534 $0.7%$ CO2 111.49608 0.68980 0.9980410 102.980 0.7534 $0.7%$ CO2 123.68517 0.44281 0.9993603 115.045 0.6589 $%$ CO 123.68517 0.44281 0.9993603 115.045 0.6589 $%$ CO 123.68517 0.44281 0.9993603 115.045 0.6589 $%$ CO 123.68517 0.44281 0.9993603 125.045 0.6589 $%$ CD 141.72100 0.34787 1.0001804 168.664 0.5356 $%$ CD 81.41997 1.83428 0.9835781 74.933 2.0128 $%$ CH10 81.41997 1.85378 0.9835781 74.933 2.0343 $%$ CH10 81.41997 1.85378 0.9835781 74.933 2.0343 $%$ CH10 81.41997 1.85378 0.9835781 74.934 2.0343 $%$ CH10 81.41997 1.85378 0.9832927 7	189		93% CH4 / 3% C2H6 / 1% C3H8 / 2% N2 / 1% C			0.9979255	103.189	0.7722	0.9973965
D2%C3H8/0.1% 111.49608 0.68980 0.9980410 102.980 0.7534 D2%C2H4 111.49608 0.68980 0.9980410 102.980 0.7534 $6CO/5%C2H4$ 123.68517 0.44281 0.9993603 115.045 0.6589 $6CO/5%C2H4$ 123.68517 0.44281 0.9993603 115.045 0.6589 $6N2$ 141.72100 0.34787 1.0005210 133.088 0.3797 $8N2$ 141.72100 0.34787 1.0005210 133.088 0.3797 $96/C2H6/0.4\%$ 81.45829 1.83428 0.9836781 16.676 0.53366 $96/C2H6/0.4\%$ 81.45829 1.83428 0.9836781 74.933 2.0128 $96/C4H10$ 81.41997 1.83428 0.9832927 74.933 2.0343 $H6/5\%n-C4H10$ 81.41997 1.85378 0.9832927 74.933 2.0128 $96/C4H$ 81.41997 1.87666651 0.339910 14.6966781 0.4033 $16/5\%hHe$ 199.24300 0.399910 10.000471 186.670	190	Nat Gas-2	95% CH4 / 3% C2H6 / 1% N2 / 1% CO2	111.5557		0.9980544	103.027	0.7543	0.9974642
	191	Nat Gas-3	95.2% CH4 / 2.5% C2H6 / 02% C3H8 / 0.1% C4H10 / 1.3% N2 / 0.7% CO2			0.9980410	102.980	0.7534	0.9974725
%N2 141.72100 0.34787 1.0005210 133.088 0.3797 33%02 180.46190 0.49078 1.0001804 168.664 0.5356 35%02 180.46190 0.49078 1.0001804 168.664 0.5356 % C2H6 / 0.4% 81.45829 1.83428 0.9835781 74.933 2.0128 % C2H6 / 0.4% 81.45829 1.83428 0.9835927 74.933 2.0128 H6 / 5%n-C4H10 81.41997 1.85378 0.9832927 74.934 2.0343 H6 / 5%n-C4H10 81.414997 1.85378 0.9832927 74.934 2.0343 H6 / 5%n-C4H10 81.414997 1.86567 0.4937 9.04937 % C4H10 197.05613 14.696 PSIA Piscosity Piscosity % S2% He 199.24300 0.3999919 186.670 0.4333 % S2% He 197.05519 0.41696 PSIA 186.670 0.4333 % S2% He 197.0551 0.41548 0.49971 186.670 0.4333 % He 197.0551	192	Coal Gas	50% H2 / 35% CH4 / 10% CO / 5% C2H4	123.6851		0.9993603	115.045	0.6589	0.996387
33% 02 180.46190 0.49078 1.0001804 168.664 0.5356 0.5356 0.5216 0.5316 0.5516 0.	193	Endo	75% H2 + 25% N2	141.7210		1.0005210	133.088	0.3797	1.000511
% C2H6 / 0.4% 81.45829 1.83428 0.9836781 74.933 2.0128 C4H10 81.41997 1.85378 0.98332927 74.933 2.0128 H6/5%n-C4H10 81.41997 1.85378 0.98332927 74.934 2.0343 H6/5%n-C4H10 81.41997 1.85378 0.9832927 74.934 2.0343 H6/5%n-C4H10 81.41997 1.85378 0.9832927 74.934 2.0343 H6/5%n-C4H10 81.41997 1.8531 1.8548 0.9343 9.04033 H6/5%n-C4H10 199.24300 0.36963 1.0001332 187.438 0.4033 Viscosity 14.696 PSIA 14.696 PSIA 186.670 0.4354 V82% He 199.24300 0.36963 1.0000471 186.670 0.4353 V6% He 197.8765 0.39910 10.0000471 186.204 0.4353 V6% He 197.8765 0.41548 0.9999919 186.204 0.4353 V6% He 197.8705 0.41548 0.99998749 184.835	194	ОНН	66.67% H2 / 33.33% O2	180.4619		1.0001804	168.664	0.5356	1.000396
H6/5%n-C4H10 81.41997 1.85378 0.9832927 74.934 2.0343 H6/5%n-C4H10 81.41997 1.85378 0.9832927 74.934 2.0343 Absolute Density* Absolute Density* Compressibility Absolute Density* / Viscosity* Density* 14.696 PSIA Viscosity 14.696 PSIA Viscosity 14.696 PSIA / 82% He 199.24300 0.36963 1.0001332 187.438 0.4033 / 82% He 199.24300 0.36963 1.0001332 187.438 0.4033 / 82% He 197.05519 0.399100 186.670 0.4354 0.4333 / 6% He 197.05519 0.41548 0.9999319 186.204 0.4533 / 6% He 195.06655 0.45805 0.9998749 184.835 0.4997 He 224.68017 0.22301 1.0004728 211.756 0.2276 0.2276 / 71.35% He 193.78311 0.5093243 183.261 0.5523 0.4997 0.5523 **Grams/Liter **Grams/Liter Accessity 0.6998243 183.261 <td< th=""><th>195</th><th>HD-5</th><th></th><th>81.45829</th><th></th><th>0.9836781</th><th>74.933</th><th>2.0128</th><th>0.9784565</th></td<>	195	HD-5		81.45829		0.9836781	74.933	2.0128	0.9784565
Z5°C 25°C 0°C Absolute Density** Compressibility Absolute Density** / Niscosity* 14.696 PSIA T4.696 PSIA Absolute Density / Niscosity* 190.24300 0.36963 1.0001332 187.438 0.4033 006 He 197.87765 0.39910 1.0000471 186.670 0.4354 906 He 197.0519 0.41548 0.9999919 186.570 0.4953 906 He 197.00519 0.41548 0.9999919 186.504 0.4533 906 He 197.00519 0.41548 0.9999919 186.204 0.4533 906 He 195.06655 0.45805 0.49997 184.835 0.4997 606 He 195.06655 0.45805 0.22301 1.0004728 211.756 0.2276 14e 224.68017 0.20633 0.9998243 183.261 0.5523 771.35% He 193.78311 0.50633 0.9998243 183.261 0.5523	196	HD-10				0.9832927	74.934	2.0343	0.9780499
Absolute Density** Compressibility Absolute Density / 82% Hosolute Density** Compressibility Absolute Density / 82% Hisosity* 14.696 PSIA 14.696 PSIA Viscosity 14.696 PSIA / 82% 199.24300 0.36963 1.0001332 187.438 0.4033 / 82% 199.24300 0.36963 1.0001322 187.438 0.4033 0% 197.8765 0.39910 186.670 0.4354 0.4354 0% 197.00519 0.41548 0.9999919 186.204 0.4533 0% 195.06655 0.45805 0.4998749 184.835 0.4997 6% 195.06655 0.45805 0.2098749 184.835 0.4997 6 224.68017 0.22301 1.0004728 211.756 0.2276 1 193.78311 0.50633 0.9998243 183.261 0.5523 1 133.5% 0.9998243 183.261 0.5523	LASER G ^A	VSES			25°C			0°C	
Viscosity* 14.696 PSIA 186.670 0.4354 0.4033 16.670 0.4354 0.4033 16.670 0.4354 0.4033 16.666 0.4354 0.4033 186.670 0.4353 16.666 0.4354 0.4033 16.703 186.204 0.4533 16.703 16.703 16.703 17.356 0.232301 1.0004728 11.756 0.2276 17.356 0.5523 183.261 0.5523 183.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523 18.8.261 0.5523	Gas	Short		Absolute	_	Compressibilty	Absolute	Density	Compressibilty
 / 82% He 199.24300 0.36963 1.0001332 187.438 0.4033 0.4033 0.4034 0.4034 0.4034 0.4034 0.4034 0.4354 0.4533 0.4997 0.4997 197.0519 0.41548 0.9998749 186.204 0.4533 0.4997 197.0553 0.45805 0.9998749 184.835 0.4997 193.04017 0.22301 0.0998749 184.835 0.2276 133.261 0.5523 **Grams/Liter Action 10001328 10001328 10001328 10001328 0.9998243 183.261 0.5523 0.9998243 183.261 0.5523 	Number		-	-	4.696 PSIA	14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
00%He 197.87765 0.39910 1.0000471 186.670 0.4354 9%He 197.00519 0.41548 0.9999919 186.204 0.4533 6%He 195.06655 0.45805 0.9998749 184.835 0.4997 6%He 195.06655 0.45805 0.9998749 184.835 0.4997 16 224.68017 0.22301 1.0004728 211.756 0.2276 71.35% He 193.78311 0.50633 0.9998243 183.261 0.5523	179	LG-4.5	•	99.24300	0.36963	1.0001332	187.438	0.4033	1.000551
'9%He 197.00519 0.41548 0.999919 186.204 0.4533 '6%He 195.06655 0.45805 0.9998749 184.835 0.4997 He 224.68017 0.22301 1.0004728 211.756 0.2276 i 193.78311 0.50633 0.9998243 183.261 0.5523 **Grams/Liter Reference: NIST REFPROP 9 Database	180	P-9- D	1	97.87765	0.39910	1.0000471	186.670	0.4354	1.00053
6%He 195.06655 0.45805 0.9998749 184.835 0.4997 He 224.68017 0.22301 1.0004728 211.756 0.2276 Y 1.35% He 193.78311 0.50633 0.9998243 183.261 0.5523 **Grams/Liter Reference: NIST REFPROP 9 Database	181	LG-7	1	97.00519	0.41548	0.9999919	186.204	0.4533	1.000514
He 224.68017 0.22301 1.0004728 211.756 0.2276 '71.35% He 193.78311 0.50633 0.9998243 183.261 0.5523 **Grams/Liter Reference: NIST REFPROP 9 Database	182	LG-9	-	95.06655	0.45805	0.9998749	184.835	0.4997	1.000478
71.35% He 193.78311 0.50633 0.9998243 183.261 0.5523 ** **Grams/Liter Reference: NIST REFPROP 9 Database	183	HeNe-9	9% Ne / 91% He	24.68017	0.22301	1.0004728	211.756	0.2276	1.000516
**Grams/Liter	184	LG-9.4		93.78311	0.50633	0.9998243	183.261	0.5523	1.000458
	*in micro	poise (1 P		iter	Refe	erence: NIST REF	PROP 9 Da	tabase	

02 CON(CENTRAI	02 CONCENTRATOR GASES		25°C			0°C	
Gas Number	Short r Name	Long Name	Absolute Viscosity*	Density** 14.696 PSIA	Compressibilty 14.696 PSIA			Density Compressibility 4.696 PSIA 14.696 PSIA
197	OCG-89	89% O2 / 7% N2 / 4% Ar	204.53313 1.31033	1.31033	0.9993849	190.897	1.4307	0.9990695
198	0CG-93	93% O2 / 3% N2 / 4% Ar	205.62114	1.31687	0.9993670	191.795	1.4379	0.9990499
199	OCG-95	95% 02 / 1% N2 / 4% Ar	206.16497	1.32014	0.9993580	192.241	1.4414	0.99904
STACK GASES	ASES			25°C			0°C	
Gas Short Number Name	Short Name	Long Name	Absolute Viscosity*	Density** 14.696 PSIA	Absolute Density** Compressibility Absolute Density Compressibility Viscosity* 14.696 PSIA Viscosity 14.696 PSIA 14.696 PSIA 14.696 PSIA	Absolute Viscosity	Density 14.696 PSIA	Compressibilty 14.696 PSIA
	1	EC 1 2 50% CO / 10 00% COO / 06 70% NI / 10% Av 175 225 1 2 2560 0 00003625 145 222	175 27575	1 2250		165 777	1 2270	

STACK GASES	ASES			25°C			0.0	
Gas	Short		Absolute	Density**	Absolute Density** Compressibility Absolute	Absolute	Density	Density Compressibility
Number Name	Name		Viscosity*	14.696 PSIA	Viscosity* 14.696 PSIA 14.696 PSIA Viscosity 14.696 PSIA	Viscosity	14.696 PSIA	14.696 PSIA
200	FG-1	FG-1 2.5% 02 / 10.8% C02 / 85.7% N2 / 1% Ar 175.22575 1.22550	175.22575	1.22550	0.9992625	165.222	1.3379	0.9990842
201	FG-2	2.9% 02 / 14% C02 / 82.1% N2 / 1% Ar 174.18002 1.24729	174.18002	1.24729	0.9991056	164.501	1.3617	0.9989417
202	FG-3	3.7% 02 / 15% C02 / 80.3% N2 / 1% Ar 174.02840 1.25520	174.02840	1.25520	0.9990536	164.426 1.3703	1.3703	0.9988933
203	FG-4	7% 02 / 12% C02 / 80% N2 / 1% Ar 175.95200 1.24078	175.95200	1.24078	0.9991842	166.012	166.012 1.3546	0.9990116
204	FG-5	10% 02 / 9.5% C02 / 79.5% N2 / 1% Ar 177.65729 1.22918	177.65729	1.22918	0.9992919	167.401	167.401 1.3419	0.9991044
205	FG-6	13% O2 / 7% CO2 / 79% N2 / 1% Ar 179.39914 1.21759	179.39914	1.21759	0.9993996	168.799	168.799 1.3293	0.9991932

CHROMA.	TOGRAPH	HY GASES		25°C			0°C	
Gas Number	Short Name	Long Name	Absolute Viscosity*	Absolute Density** Viscosity* 14.696 PSIA	Compressibilty 14.696 PSIA	Absolute Viscosity	Density 14.696 PSIA	Absolute Density Compressibility Viscosity 14.696 PSIA 14.696 PSIA
29	P-5	5% CH4 / 95% Ar	223.91060	223.91060 1.58505	0.9993265	207.988	1.7307	0.9990036
206	P-10	10% CH4 90% Ar	221.41810 1.53622	1.53622	0.9992857	205.657	205.657 1.6774	0.99895
*in micro	poise (1 F	Poise = gram / (cm) (sec)) **Grams/Liter	**Grams/Liter		Reference: NIST REFPROP 9 Database	EFPROP 9 [Database	

Numerical List of Gases

Number	Short Name	Long Name
0	Air	Air
1	Ar	Argon
2	CH4	Methane
3	CO	Carbon Monoxide
4	CO2	Carbon Dioxide
5	C2H6	Ethane
6	H2	Hydrogen
7	He	Helium
8	N2	Nitrogen
9	N2O	Nitrous Oxide
10	Ne	Neon
11	02	Oxygen
12	C3H8	Propane
13	n-C4H10	n-Butane
14	C2H2	Acetylene
15 16	C2H4 i-C4H10	Ethylene (Ethene) i-Butane
10	Kr	
17	Xe	Krypton Xenon
10	SF6	Sulfur Hexafluoride
20	C-25	25% CO2 / 75% Ar
20	C-10	10% CO2 / 90% Ar
22	C-8	8% CO2 / 92% Ar
23	C-2	2% CO2 / 98% Ar
24	C-75	75% CO2 / 25% Ar
25	He-25	25% He / 75% Ar
26	He-75	75% He / 25% Ar
27	A1025	90% He / 7.5% Ar / 2.5% CO2
28	Star29	Stargon CS 90% Ar / 8% CO2 / 2% O2
29	P-5	5% CH4 / 95% Ar
30	NO	NO (Nitric Oxide)
31	NF3	NF3 (Nitrogen Trifluoride)
32	NH3	Ammonia
33	Cl2	Chlorine
34	H2S	Hydrogen Sulfide (H2S)
35	\$02	Sulfur Dioxide
36	C3H6	Propylene (Propylene)
60	D2	Deuterium
80	1Butene	Butylene (1-Butene)
81	cButene	Cis-Butene (cis-2-butene)
82	iButene	Iso-Butene
83	tButene	Trans-Butene
84	COS	Carbonyl Sulfide
85	CH3OCH3	Dimethylether
86	SiH4	Silane (SiH4)
140	C-15	15% CO2 / 85% Ar
141	C-20	20% CO2 / 80% Ar

Number	Short Name	Long Name
142	C-50	50% CO2 / 50% Ar
143	He-50	50% He / 50% Ar
144	He-90	90% He / 10% Ar
145	Bio-5M	5% CH4 / 95% CO2
146	Bio-10M	10% CH4 / 90% CO2
147	Bio-15M	15% CH4 / 85% CO2
148	Bio-20M	20% CH4 / 80% CO2
149	Bio-25M	25% CH4 / 75% CO2
150	Bio-30M	30% CH4 / 70% CO2
151	Bio-35M	35% CH4 / 65% CO2
152	Bio-40M	40% CH4 / 60% CO2
153	Bio-45M	45% CH4 / 55% CO2
154	Bio-50M	50% CH4 / 50% CO2
155	Bio-55M	55% CH4 / 45% CO2
156	Bio-60M	60% CH4 /40% CO2
157 158	Bio-65M Bio-70M	65% CH4 /35% CO2 70% CH4 / 30% CO2
158	Bio-75M	75% CH4 / 25% CO2
160	Bio-80M	80% CH4 / 20% CO2
161	Bio-85M	85% CH4 / 15% CO2
162	Bio-90M	90% CH4 / 10% CO2
163	Bio-95M	95% CH4 / 5% CO2
164	EAN-32	32% O2 / 68% N2
165	EAN	36% O2 / 64% N2
166	EAN-40	40% O2 / 60% N2
167	HeOx-20	20% O2 / 80% He
168	HeOx-20	21% O2 / 79% He
169		30% O2 / 79% He
	HeOx-30	
170	HeOx-40	40% O2 / 60% He
171	HeOx-50	50% O2 / 50% He
172	HeOx-60	60% O2 / 40% He
173	HeOx-80	80% O2 / 20% He
174	HeOx-99	99% O2 / 1% He
175	EA-40	Enriched Air-40% O2
176	EA-60	Enriched Air-60% O2
177	EA-80	Enriched Air-80% O2
178	Metabol	Metabolic Exhalant (16% O2 / 78.04% N2 / 5% CO2 / 0.96% Ar)
179	LG-4.5	4.5% CO2 / 13.5% N2 / 82% He
180	LG-6	6% CO2 / 14% N2 / 80% He
181	LG-7	7% CO2 / 14% N2 / 79% He
182	LG-9	9% CO2 / 15% N2 / 76% He
183	HeNe-9	9% Ne / 91% He
184	LG-9.4	9.4% CO2 / 19.25% N2 / 71.35% He
185	Syn Gas-1	40% H2 + 29% CO + 20% CO2 + 11% CH4
186	Syn Gas-2	64% H2 + 28% CO + 1% CO2 + 7% CH4

Number	Short Name	Long Name
187	Syn Gas-3	70% H2 + 4% CO + 25% CO2 + 1% CH4
188	Syn Gas-4	83%H2+14%CO+3%CH4
189	Nat Gas-1	93%CH4/3%C2H6/1%C3H8/2%N2/1%CO2
190	Nat Gas-2	95% CH4 / 3% C2H6 / 1% N2 / 1% CO2
191	Nat Gas-3	95.2%CH4/2.5%C2H6/0.2%C3H8/0.1%C4H10/1.3%N2/0.7%CO2
192	Coal Gas	50% H2 / 35% CH4 / 10% CO / 5% C2H4
193	Endo	75% H2 + 25% N2
194	ННО	66.67% H2 / 33.33% O2
195	HD-5	LPG 96.1% C3H8 / 1.5% C2H6 / 0.4% C3H6 / 1.9% n-C4H10
196	HD-10	LPG 85% C3H8 / 10% C3H6 / 5% n-C4H10
197	OCG-89	89% O2 / 7% N2 / 4% Ar
198	OCG-93	93% O2 / 3% N2 / 4% Ar
199	OCG-95	95% O2 / 1% N2 / 4% Ar
200	FG-1	2.5% O2 / 10.8% CO2 / 85.7% N2 / 1% Ar
201	FG-2	2.9% O2 / 14% CO2 / 82.1% N2 / 1% Ar
202	FG-3	3.7% O2 / 15% CO2 / 80.3% N2 / 1% Ar
203	FG-4	7% O2 / 12% CO2 / 80% N2 / 1% Ar
204	FG-5	10% O2 / 9.5% CO2 / 79.5% N2 / 1% Ar
205	FG-6	13% O2 / 7% CO2 / 79% N2 / 1% Ar
206	P-10	10% CH4 90% Ar

Device Units

Your device can display data in various engineering units. The most current listing of engineering units is available at alicat.com/units. You can change units from the Main Display (page 20) or from the Basic Configuration menu (page 30). Only the units appropriate to your flow controller are available for selection.

Flow Units

Volumetric	Standard	Normal	Notes
uL/m	SuL/m	NuL/m	microliter per minute
mL/s	SmL/s	NmL/s	milliliter per second
mL/m	SmL/m	NmL/m	milliliter per minute
mL/h	Sml/h	NmL/h	milliliter per hour
L/s	SL/s	NL/s	liter per second
LPM	SLPM	NLPM	liter per minute
L/h	SL/h	NL/h	liter per hour
US GPM			US gallon per minute
US GPH			US gallon per hour
CCS	SCCS	NCCS	cubic centimeter per second
CCM	SCCM	NCCM	cubic centimeter per minute
cm3/h	Scm3/h	Ncm3/h	cubic centimeter per hour
m3/m	Sm3/m	Nm3/m	cubic meter per minute
m3/h	Sm3/h	Nm3/h	cubic meter per hour
m3/d	Sm3/d	Nm3/d	cubic meter per day
in3/m	Sin3/m		cubic inch per minute
CFM	SCFM		cubic foot per minute
CFH	SCFH		cubic foot per hour
CFD	SCFD		cubic foot per day
	kSCFM		1000 cubic feet per minute
count	count	count	setpoint count, 0 – 64000
%	%	%	percent of full scale

True Mass Flow Units

Label	Notes
mg/s	milligram per second
mg/m	milligram per minute
g/s	gram per second
g/m	gram per minute
g/h	gram per hour
kg/m	kilogram per minute
kg/h	kilogram per hour
oz/s	ounce per second
oz/m	ounce per minute
lb/m	pound per minute
lb/h	pound per hour

Device Units

Pressure Units

Absolute/Barometric	Gauge	Notes
PaA	PaG	pascal
hPaA	hPaG	hectopascal
kPaA	kPaG	kilopascal
MPaA	MPaG	megapascal
mbarA	mbarG	millibar
barA	barG	bar
g/cm2A	g/cm2G	gram force per square centimeter
kg/cmA	kg/cmG	kilogram force per square centimeter
PSIA	PSIG	pound force per square inch
PSFA	PSFG	pound force per square foot
mTorrA	mTorrG	millitorr
torrA	torrG	torr
mmHgA	mmHgG	millimeter of mercury at 0 C
inHgA	inHgG	inch of mercury at 0 C
mmH2OA	mmH2OG	millimeter of water at 4 C (NIST conventional)
mmH2OA	mmH2OG	millimeter of water at 60 C
cmH2OA	cmH2OG	centimeter of water at 4 C (NIST conventional)
cmH2OA	cmH2OG	centimeter of water at 60 C
inH2OA	inH2OG	inch of water at 4 C (NIST conventional)
inH2OA	inH2OG	inch of water at 60 C
atm		atmosphere
m asl		meter above sea level (only in /ALT builds)
ft asl		foot above sea level (only in /ALT builds)
V	volt; no cor	nversions are performed to or from other units
count	count	setpoint count, 0 – 64000
%	%	percent of full scale

Temperature Units

Label	Notes
°C	degree Celsius
°F	degree Farenheit
К	Kelvin
°R	degree Rankine

Time Units

Label	Notes
h:m:s	Displayed value is hours:minutes:seconds
ms	millisecond
S	second
m	minute
hour	hour
day	day

Accessories

Part Number	Description
FLOWVISIONSC	Flow Vision [™] SC software for interface with all Alicat instruments
FLOWVISIONMX	Flow Vision™ MX software for gas blending
BB9-232	9 position Multi Drop Box with 9-pin serial port and USB to PC
BB9-I	9 position Multi-Drop Box, Industrial connectors
PVPS24U	Universal 100-240 VAC to 24 Volt DC Power Supply Adapter
PS24VHC	High current power supply for BB9 use with Large Valve Controllers
PVPS5USBU	micro-USB to wall adapter
PCASE	Industrial carry and storage case for up to 2 portable meters/gauges
PCASE-L	Industrial carry and storage case for up to 6 meters and controllers
DC-61	8 Pin Male Mini-DIN connector cable, single ended, 6 foot length
DC-6RT	8 Pin Male Right Angle Mini-DIN Cable, single ended, 6 foot length
DC-251	8 Pin Male Mini-DIN connector cable, single ended, 25 foot length
DC-501	8 Pin Male Mini-DIN connector cable, single ended, 50 foot length
DC-751	8 Pin Male Mini-DIN connector cable, single ended, 75 foot length
DC-1001	8 Pin Male Mini-DIN connector cable, single ended, 100 foot length
DC-32RS	8-pin Male Mini-DIN connector cable, double ended, no analog, 3 foot length
DC-62RS	8-pin Male Mini-DIN connector cable, double ended, no analog, 6 foot length
DC-62	8 Pin Male Mini-DIN connector cable, double ended, 6 foot length
DC-252	8 Pin Male Mini-DIN connector cable, double ended, 25 foot length
DC-502	8 Pin Male Mini-DIN connector cable, double ended, 50 foot length
MD8DB9	8 Pin Male Mini-DIN to DB9 Female Adapter, 6 foot length
DBC-251	DB15 cable, single ended, 25 foot length
510199	DB9 cable, double-ended female, 3 meter length
IC10	Industrial cable, 6 Pin, single ended, 10 foot length
IC20	Industrial cable, 6 Pin, single ended, 20 foot length
IC50	Industrial cable, 6 Pin, single ended, 50 foot length
IC-102	Industrial cable, 6 pin double ended, 10 foot length

Accessories

MNPT to Com	pression Fittings
10-32 - 1/8"	SS-200-1-0157
10-32 - 1/4"	SS-400-1-0256
1/8" - 1/8"	SS-200-1-2
1/8" - 1/4"	SS-400-1-2
1/8" - 3/8"	SS-600-1-2
1/8" - 1/2"	SS-810-1-2
1/8" - 3mm	SS-3M0-1-2
1/8" - 4mm	SS-4M0-1-2
1/8" - 6mm	SS-6M0-1-2
1/8" - 8mm	SS-8M0-1-2
1/8" - 12mm	SS-12M0-1-2
1/4" - 1/8"	SS-200-1-4
1/4" - 1/4"	SS-400-1-4
1/4" - 3/8"	SS-600-1-4
1/4" - 1/2"	SS-810-1-4
1/4" - 3mm	SS-3M0-1-4
1/4" - 4mm	SS-4M0-1-4
1/4" - 6mm	SS-6M0-1-4
1/4" - 8mm	SS-8M0-1-4
1/4" - 12mm	SS-12M0-1-4
1/2" - 1/8"	SS-200-1-8
1/2" - 1/4"	SS-400-1-8
1/2" - 3/8"	SS-600-1-8
1/2" - 1/2"	SS-810-1-8
1/2" - 3/4"	SS-1210-1-8
1/2" - 6mm	SS-6M0-1-8
1/2" - 8mm	SS-8M0-1-8
1/2" - 12mm	SS-12M0-1-8
1/2" - 16mm	SS-16M0-1-8
3/4" - 1/4"	SS-400-1-12
3/4" - 1/2"	SS-810-1-12
3/4" - 3/4"	SS-1210-1-12
3/4" - 12mm	SS-12M0-1-12
3/4" - 16mm	SS-16M0-1-12

Filters & Elements FNPT-MNPT			
10-32 5µ	510053		
10-32 20µ	510054		
1/8″ 20µ	ILF-1/8-20		
1/4" 40µ	ILF-1/4-40		
1/2" 40µ	ILF-1/2-40*		
3/4" 40µ	ILF-3/4-40*		
20µ element	ILFE20		
40µ element	ILFE40		
40µ element	ILFE40L*		

Filters & Elements FNPT-FNPT*			
10-32 5µ	CF-303-20-316		
*requires MNPT to MNPT coupler to interface with Alicat flow bodies			

10-32 Male UNF to 1/8 FNPT Adapter 410133

Male M5 (10-32) Buna-N O-ring face seal to 1/8"Female NPT

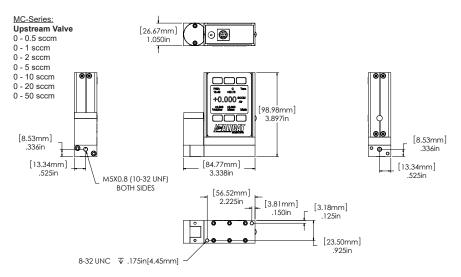
Specification Sheets Technical Data for Alicat MC and MCR Mass Flow Controllers 0 to 0.5 sccm Full Scale through 0 to 5000 slpm Full Scale

Sta

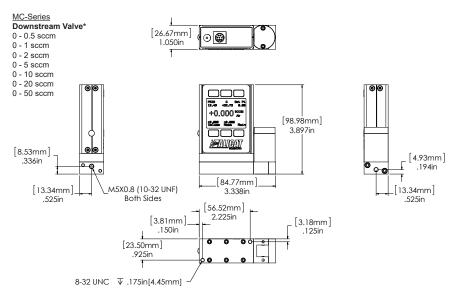
Standard Operating a	specifications	(Contact Allcat for available options)	

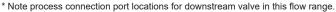
etallaala eperating epeeniet		-/	
Performance	MC & MCR Mass Flow Controller		
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		
High Accuracy at calibration conditions after tare	± (0.4% of Reading + 0.2% of Full Scale) High Accuracy option not available for units ranged under 5 sccm or over 500 slpm.		
Repeatability	± 0.2% Full Scale		
Zero Shift and Span Shift	0.02% Full Scale / °Celsius / Atm		
Operating Range / Turndown Ratio	0.5% to 100% Full Scale / 200:1 Turndown		
Maximum Controllable Flow Rate	102.4% Full Scale		
Maximum Measurable Flow Rate	up to 128% Full Scale (Gas Dependent)		
Typical Response Time	100 ms (Adjustable	e)	
Warm-up Time	< 1 Second		
Operating Conditions	MC & MCR Mass Flow Controller		
Mass Reference Conditions (STP)	25°C & 14.696 psia (standard — others available on request)		
Operating Temperature	-10 to +60 °Celsius		
Humidity Range (Non–Condensing)	0 to 100%		
Max. Internal Pressure (Static)	145 psig		
Proof Pressure	175 psig		
Mounting Attitude Sensitivity	MC: None MCR: Mount with valve cylinder vertical & upright		
Valve Type	Normally Closed		
Ingress Protection	IP40		
Wetted Materials	MC: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Reinforced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, Brass, 430FR Stainless Steel, Silicon, Glass. MCR: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Rein- forced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, 416 Stainless Steel, Silicon, Glass. If your application demands a different material, please contact Alicat.		
Communications / Power	MC & MCR Mass Flow Controller		
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass Flow, Volumetric Flow, Pressure and Temperature		
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS		
Analog Input/Output Signal ² Options	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Optional Secondary Analog Input/Output Signal ²	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Electrical Connection Options	8 pin Mini-DIN, 9 pin D-sub (DB9), 15 pin D-sub (DB15), 6 pin locking, 8 pin M12		
Supply Voltage	MC: 12 to 30 Vdc (15-30 Vdc for 4-20 mA outputs)	MCR: 24 to 30 Vdc	
Supply Current	MC: 0.250 Amp	MCR: 0.750 Amp (MCRH: 2.0 Amp)	
1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature			

1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature

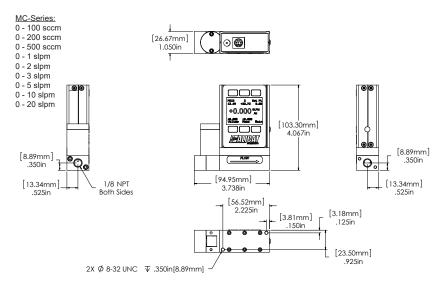

2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature.

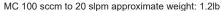
Range Specific Specifications

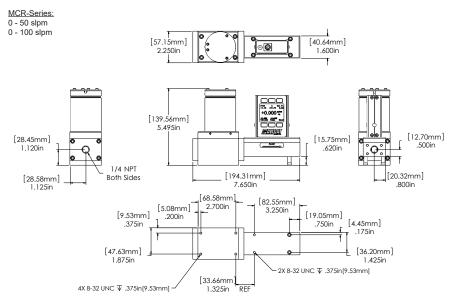

tange opeenie opeenie ations			
Full Scale Flow Mass Controller	Pressure Drop ¹ at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ²
MC 0.5 sccm to 50 sccm	1.0	3.9"H x 3.4"W x 1.1"D	M-5 (10-32) Female Thread ³
MC 100 sccm to 500 sccm	1.0	4.1"H x 3.6"W x 1.1"D	1/8" NPT Female
MC 1 slpm	1.5		
MC 2 slpm	3.0		
MC 5 slpm	2.0		
MC 10 slpm	5.5		
MC 20 slpm	20.0		
MCR 50 slpm	2.0	5.5"H x 7.7"W x 2.3"D	1/4" NPT Female
MCR 100 slpm	3.2		
MCR 250 slpm	2.4	5.5"H x 7.7"W x 2.3"D	1/2" NPT Female
MCR 500 slpm	6.5		3/4" NPT Female
MCR 1000 slpm	14.0	5.5"H x 7.4"W x 2.3"D	(A 1-1/4" NPT Female process connection is available for
MCR 1500 slpm	17.0		
MCR 2000 slpm	28.6	5.5"H x 8.1" W x 2.9" D	2000 slpm controllers.)
MCR 3000 slpm	16.8	5.5"H x 8.9" W x 2.9" D	1-1/4" NPT Female
MCRH 5000 slpm	14.1	6.3"H x 9.8"W x 4.5"D	2" NPT Female
1. Lower Pressure Drops Available, please see our WHISPER-Series mass flow controllers at www.alicat.com/whisper.			

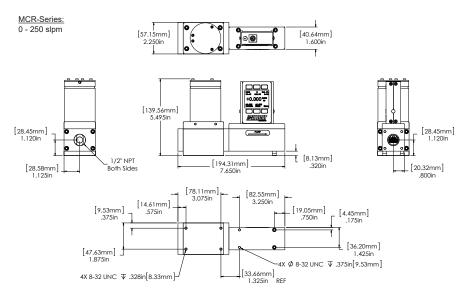

ER-Series m s flow contro 2. Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE connections upon request.

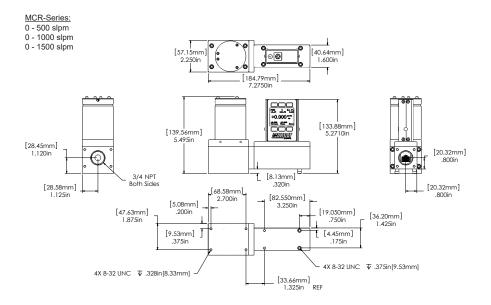
3. Shipped with M-5 (10-32) Male Buna-N O-ring face seal to 1/8" Female NPT fittings.

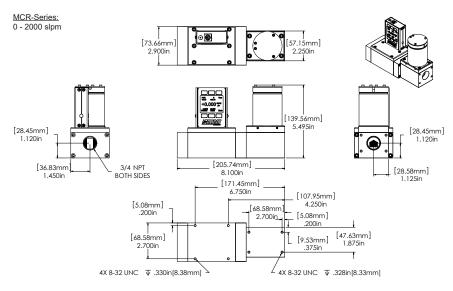


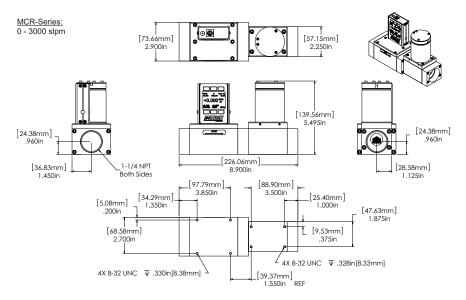

MC 0.5 sccm to 50 sccm approximate shipping weight: 1.1 lb.

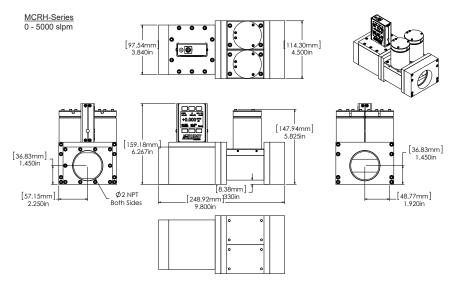



MC 0.5 sccm to 50 sccm approximate shipping weight: 1.1 lb.




MCR 50 slpm to 100 slpm approximate weight: 9.0 lb.


MCR 250 slpm approximate weight: 9.0 lb.


MCR 1500 slpm approximate weight: 9.0 lb.

MCR 2000 slpm approximate weight: 12.0 lb.

MCR 3000 slpm approximate weight: 12.0 lb.

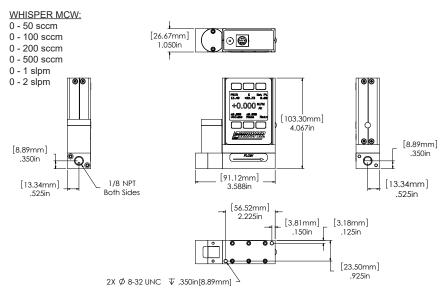
MCRH 5000 slpm approximate weight: 28.0 lb.

Technical Data for WHISPER Low Pressure Drop Mass Flow Controllers 0 to 0.5 sccm Full Scale through 0 to 1000 slpm Full Scale

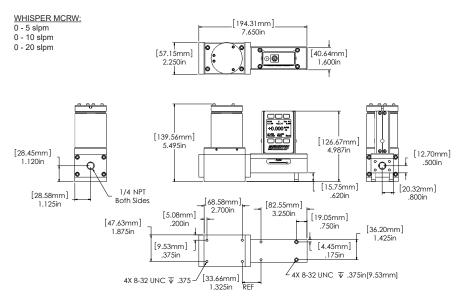
Standard Specifications	(Contact Alicat for	available options.)

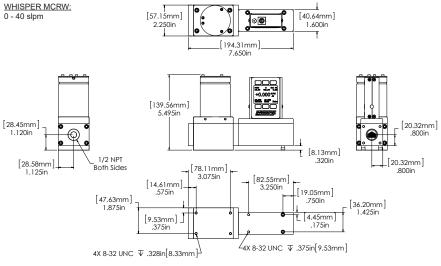

Standard Specifications (Contact Alicat for available options.)			
Performance	Whisper MC	W & MCRW Mass Fl	ow Controller
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		
High Accuracy at calibration		± (0.4% of Reading + 0.2% of Full Scale)	
conditions after tare	High Accuracy option not availa	High Accuracy option not available for units ranged under 5 sccm or over 500 slpm.	
Repeatability		± 0.2% Full Scale	
Zero Shift and Span Shift		% Full Scale / °Celsiu	
Operating Range / Turndown Ratio	0.5% to 10	00% Full Scale / 200:	1 Turndown
Maximum Controllable Flow Rate		102.4% Full Scale	
Maximum Measurable Flow Rate	up to 12	8% Full Scale (Gas D	ependent)
Typical Response Time		100 ms (Adjustable)	
Warm-up Time		< 1 Second	
Operating Conditions	Whisper MC	Whisper MCW & MCRW Mass Flow Controller	
Mass Reference Conditions (STP)	25°C & 14.696 psia (standard — others available on request)		
Operating Temperature		-10 to +60 °Celsius	
Humidity Range (Non–Condensing)	0 to 100%		
Max. Internal Pressure (Static)	45 psig Higher lin	45 psig Higher line pressures available, please contact Alicat.	
Proof Pressure	175 psig		
Mounting Attitude Sensitivity	MCW: None MCRW: Mount with valve cylinder vertical & uprig		valve cylinder vertical & upright
Valve Type	Normally Closed		
Ingress Protection	IP40		
Wetted Materials	MCW: 303 & 302 Stainless Steel, Viton®, Silicone RTV (Rubber), Glass Reinforced Nylon, Aluminum, Brass, 430FR Stainless Steel, Silicon, Glass. MCRW: 303 & 302 Stainless Steel, Viton®, Silicone RTV (Rubber), Glass Reinforced Nylon, Aluminum, 416 Stainless Steel, Nickel, Silicon, Glass. If your application demands a different material, please contact Alicat.		
Communications / Power	Whisper MCW & MCRW Mass Flow Controller		contact Alicat.
	Whisper MC	W & MCRW Mass Fl	
Monochrome LCD or Color TFT Display with integrated touchpad			
	Simultaneously displays Mas RS-232 Serial, RS-44	s Flow, Volumetric Fl	ow Controller ow, Pressure and Temperature EtherCAT, EtherNet/IP,
Display with integrated touchpad	Simultaneously displays Mas RS-232 Serial, RS-4 Modbus F	s Flow, Volumetric Fl 85 Serial, DeviceNet, I	ow Controller ow, Pressure and Temperature EtherCAT, EtherNet/IP, PROFIBUS
Display with integrated touchpad Digital Communications Options ¹	Simultaneously displays Mas RS-232 Serial, RS-4 Modbus F 0-5 Vdc	s Flow, Volumetric Fl 85 Serial, DeviceNet, I RTU, Modbus TCP/IP, / 1-5 Vdc / 0-10 Vdc	ow Controller ow, Pressure and Temperature EtherCAT, EtherNet/IP, PROFIBUS / 4-20 mA
Display with integrated touchpad Digital Communications Options ¹ Analog Input/Output Signal ² Options	Simultaneously displays Mas RS-232 Serial, RS-4 Modbus F 0-5 Vdc	s Flow, Volumetric Fl 85 Serial, DeviceNet, I RTU, Modbus TCP/IP,	ow Controller ow, Pressure and Temperature EtherCAT, EtherNet/IP, PROFIBUS / 4-20 mA
Display with integrated touchpad Digital Communications Options ¹ Analog Input/Output Signal ² Options Optional Secondary Analog	Simultaneously displays Mas RS-232 Serial, RS-4 Modbus F 0-5 Vdc 0-5 Vdc	s Flow, Volumetric Fl 85 Serial, DeviceNet, I RTU, Modbus TCP/IP, / 1-5 Vdc / 0-10 Vdc / 1-5 Vdc / 0-10 Vdc	ow Controller ow, Pressure and Temperature EtherCAT, EtherNet/IP, PROFIBUS / 4-20 mA
Display with integrated touchpad Digital Communications Options ¹ Analog Input/Output Signal ² Options Optional Secondary Analog Input/Output Signal ²	Simultaneously displays Mas RS-232 Serial, RS-4 Modbus F 0-5 Vdc 0-5 Vdc	s Flow, Volumetric Fl 85 Serial, DeviceNet, RTU, Modbus TCP/IP, / 1-5 Vdc / 0-10 Vdc / 1-5 Vdc / 0-10 Vdc DB9), 15 pin D-sub (D	ow Controller bw, Pressure and Temperature EtherCAT, EtherNet/IP, PROFIBUS PROFIBUS / 4-20 mA

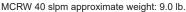
2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass

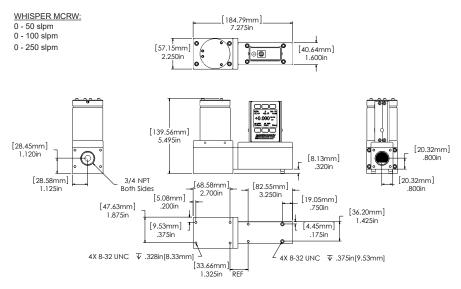

Flow, Volumetric Flow, Pressure or Temperature

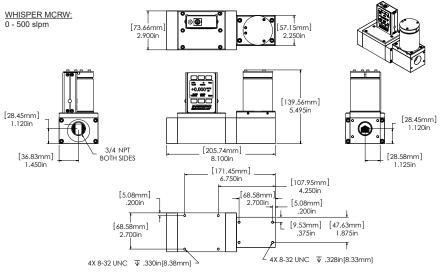
ange Specific Specifications				
Full Scale Flow Mass Controller	Pressure Drop at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections	
MCW 0.5 sccm to 2 sccm	0.06		M-5 (10-32) Female	
MCW 5 sccm to 10 sccm	0.08	3.9"H x 3.4"W x 1.1"D		
MCW 20 sccm	0.07		Thread ²	
MCW 50 sccm to 200 sccm	0.07		1/8" NPT Female	
MCW 500 sccm	0.08	4.1"H x 3.6"W x 1.1"D		
MCW 1 slpm	0.10	4.1 H X 3.0 W X 1.1 D		
MCW 2 slpm	0.18]		
MCRW 5 slpm	0.10		1/4" NPT Female	
MCRW 10 slpm	0.12	5.5"H x 7.7"W x 2.3"D		
MCRW 20 slpm	0.26	1		
MCRW 40 slpm	0.14	5.5"H x 7.7"W x 2.3"D	1/2" NPT Female	
MCRW 50 slpm	0.17			
MCRW 100 slpm	0.30	5.5"H x 7.3"W x 2.3"D	3/4" NPT Female	
MCRW 250 slpm	0.69]		
MCRW 500 slpm	0.69	5.5"H x 8.1"W x 2.7"D	3/4" NPT Female	
MCRWH 1000 slpm	1.65	6.3"H x 9.8"W x 4.5"D	2" NPT Female	

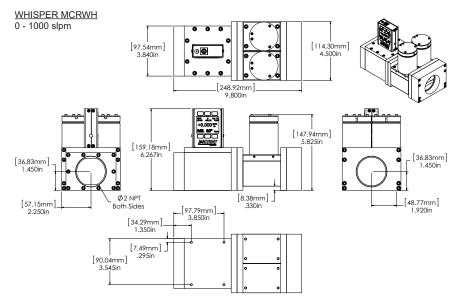

1. Compatible with Beswick®, Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE connections upon request. 2. Shipped with M-5 (10-32) Male Buna-N O-ring face seal to 1/8" Female NPT fittings.


MCW 0.5 sccm to 20 sccm approximate shipping weight: 1.1 lb.




MCW 50 sccm to 2 slpm approximate weight: 1.2lb


MCRW 5 slpm to 20 slpm approximate weight: 6.4 lb.



MCRW 50 slpm to 250 slpm approximate weight: 9.0 lb.

MCRW 500 slpm approximate weight: 11.0 lb.

MCRHW 1000 slpm approximate weight: 28.0 lb.

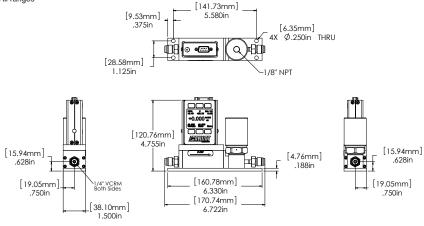
Technical Data for Alicat MCV & MCVSMass Flow controllers 0 – 0.5 sccm Full Scale through 0 – 5000 slpm Full Scale

The Alicat **MCV** mass flow controller is designed for applications that require tight shut-off such as vacuum coating and sputtering processes. An integrated pneumatic shut-off valve is normally closed and provides positive shut-off of 1×10^{-9} atm scc/sec Helium max. **MCVS** controllers are for use with aggressive gases.

Standard Specifications (Contact Alicat for available options.)

Performance	MCV Mass Flow Controller	MCVS Mass Flow Controller	
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		
High Accuracy at calibration conditions after tare	± (0.4% of Reading + 0.2% of Full Scale)		
Repeatability	High Accuracy option not available for units ranged under 5 sccm. ± 0.2% Full Scale		
Zero Shift and Span Shift	0.02% Full Scale / °Celsius / Atm		
Operating Range / Turndown Ratio	0.5% to 100% Full Scale / 200:1 Turndown	1% to 100% Full Scale / 100:1 Turndown	
Maximum Controllable Flow Rate	102.4% Full Scale		
Maximum Measurable Flow Rate	up to 128% Full Scale (Gas Dependent)		
Typical Response Time	100 ms (Adjustable)		
Warm-up Time	< 1 Second		
Integrated Valve Leak Integrity	1 x 10 ^{.9} atm scc/sec Helium max		

Operating Conditions	MCV Mass Flow Controller	MCVS Mass Flow Controller		
Mass Reference Conditions (STP)	25°C & 14.696 psia (standard — others available on request)			
Operating Temperature	-10 to +60	°Celsius		
Humidity Range (Non– Condensing)	0 to 10	00%		
Max. Internal Pressure (Static)	145 p	osig		
Proof Pressure	175 p	osig		
Mounting Attitude Sensitivity	Nor	ne		
Valve Type	Normally	Closed		
Ingress Protection	IP4	0		
Wetted Materials	MCV: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Rein- forced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, Brass, 430FR Stainless Steel, Silicon, Glass. MCVS: 316LSS, 303SS, 430FRSS, FFKM (Kalrez) standard, Viton, EPDM, Buna, Neoprene as needed for some gases. If your application demands a different material, please contact Alicat.			
Communications / Power	Whisper MCV & MCVS Mass Flow Controller			
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass Flow, Volumetric Flow, Pressure and Temperature			
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS			
Analog Input/Output Signal ² Options	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA			
Optional Secondary Analog Input/ Output Signal ²	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA			
Electrical Connection Options	8 pin Mini-DIN, 9 pin D-sub (DB9), 15 pin D-sub (DB15), 6 pin locking, 8 pin M12			
Supply Voltage	12 to 30 Vdc (15-30 Vdc for 4-20 mA outputs)			
Supply Current	0.250 Amp			
1. The Digital Output Signal comm	1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature			


1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature

2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature

Range Specific Specifications

Full Scale Mass Flow Controller	Mechanical Dimensions	Process Connections		
MCV 0.5SCCM to 20SLPM	4.8"H x 6.8"W x 1.5"D	1/4" VCR® Male		
MCVS 0.5SCCM to 20SLPM 5.5"H x 6.8"W x 1.5"D 1/4" VCR® Male				
Welded VCR® process connections are recommended for MCV and MCVS applications. Please contact Alicat.				

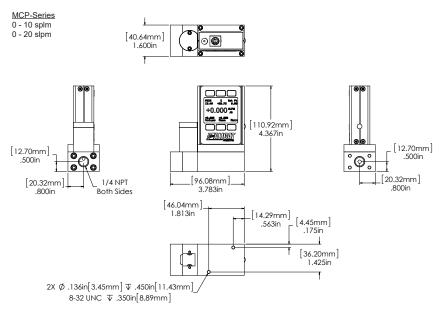
MCV-Series All ranges

MCVS approximate weight: 3.2 lb.

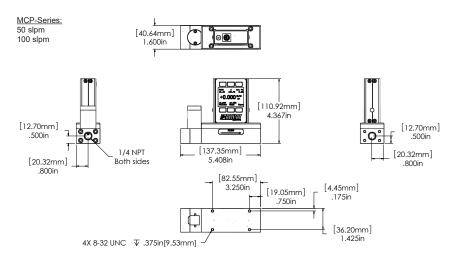
Technical Data for Alicat MCP Moderate Mass Flow controllers 0 to 10 slpm Full Scale through 0 to 250 slpm Full Scale

Alicat MCP mass flow controllers are fitted with a high performance valve for low pressure applications. The following specifications are applicable to Alicat MCP-Series Mass Flow Controllers only.

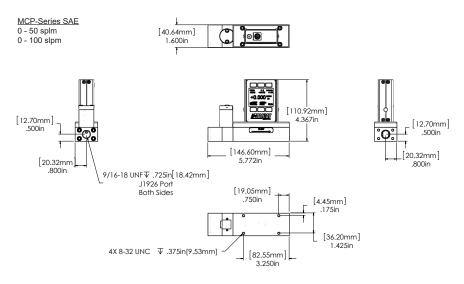
Standard Operating Specifications (Contact Alicat for available options)

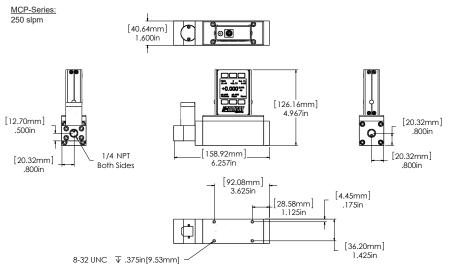

Performance	MCP Mass Flow Controller		
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		
High Accuracy at calibration conditions after tare	± (0.4% of Reading + 0.2% of Full Scale)		
Repeatability	± 0.2% Full Scale		
Zero Shift and Span Shift	0.02% Full Scale / °Celsius / Atm		
Operating Range / Turndown Ratio	0.5% to 100% Full Scale / 200:1 Turndown		
Maximum Controllable Flow Rate	102.4% Full Scale		
Maximum Measurable Flow Rate	up to 128% Full Scale (Gas Dependent)		
Typical Response Time	100 ms (Adjustable)		
Warm-up Time	< 1 Second		
Operating Conditions	MCP Mass Flow Controller		
Mass Reference Conditions (STP)	25℃ & 14.696 psia (standard — others available on request)		
Operating Temperature	-10 to +60 °Celsius		
Humidity Range (Non–Condensing)	0 to 100%		
Max. Internal Pressure (Static)	145 psig		
Proof Pressure	175 psig		
Mounting Attitude Sensitivity	None		
Valve Type	Normally Closed		
Ingress Protection	IP40		
Wetted Materials	303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Reinforced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, Brass, 430FR Stainless Steel, Silicon, Glass. If your application demands a different material, please contact Alicat.		
Communications / Power	MCP Mass Flow Controller		
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass Flow, Volumetric Flow, Pressure and Temperature		
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS		
Analog Input/Output Signal ² Options	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Optional Secondary Analog Input/Output Signal ²	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Electrical Connection Options	8 pin Mini-DIN, 9 pin D-sub (DB9), 15 pin D-sub (DB15), 6 pin locking, 8 pin M12		
Supply Voltage	12 to 30 Vdc (15-30 Vdc for 4-20 mA outputs)		
Supply Current	0.250 Amp		
1 The Digital Output Signal commu	he Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature		

1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature


2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature

Range Specific Specifications


Full Scale Flow Mass Controller	Pressure Drop at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ¹	
MCP 10 slpm	1.1	4.4"H x 3.8"W x 1.6"D		
MCP 20 slpm	1.5	4.4 H X 3.6 W X 1.6 D	1/4" NPT Female	
MCP 50 slpm	7	4.4"H x 5.4"W x 1.6"D		
MCP 100 slpm	20	4.4 H X 5.4 W X 1.0 D		
MCP 250 slpm	60	5.0"H x 6.3"W x 1.6"D	1/2" NPT Female	
1. Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE connections upon request.				



10 slpm to 50 slpm approximate shipping weight: 3.0 lb.

50 slpm to 100 slpm approximate shipping weight: 3.2 lb.

100 slpm to 250 slpm approximate shipping weight: 4.4 lb.

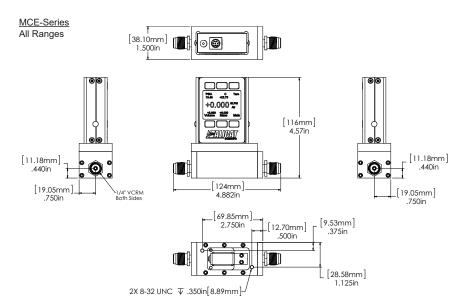
Technical Data for Alicat MCE and MCES Mass Flow controllers 0 – 0.5 sccm Full Scale through 0 – 20 slpm Full Scale

MCE mass flow controllers are built with a proportional valve positioned within the base of the unit. Please contact Alicat for MCE controller application information. **MCES** controllers are for use with aggressive gases.

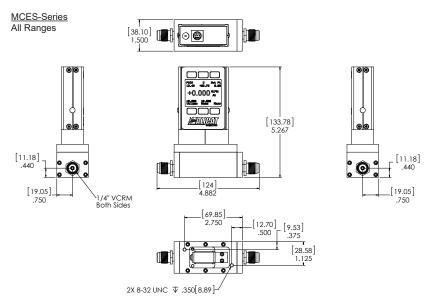
Standard Operating Specifications (Contact Alicat for available options)

Performance	MCE & MCES Mass Flow Controller		
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		
High Accuracy at calibration conditions after tare	± (0.4% of Reading + 0.2% of Full Scale)		
Repeatability	± 0.2% Full Scale		
Zero Shift and Span Shift	0.02% Full Scale / °Celsius / Atm		
Operating Range / Turndown Ratio	0.5% to 100% Full Scale / 200:1 Turndown 1% to 100% Full Scale / 100:1 Turndo		
Maximum Controllable Flow Rate	102.4% Full Scale		
Maximum Measurable Flow Rate	up to 128% Full Scale (Gas Dependent)		
Typical Response Time	100 ms (Adjustable)		
Warm-up Time	< 1 Second		

Operating Conditions	MCE & MCES Mass Flow Controller
Mass Reference Conditions (STP)	25°C & 14.696 psia (standard — others available on request)
Operating Temperature	-10 to +60 °Celsius
Humidity Range (Non–Condensing)	0 to 100%
Max. Internal Pressure (Static)	145 psig
Proof Pressure	175 psig
Mounting Attitude Sensitivity	None
Valve Type	Normally Closed
Ingress Protection	IP40
Wetted Materials	MCE: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Rein- forced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, Brass, 430FR Stainless Steel, Silicon, Glass. MCES: 316LSS, 303SS, 430FRSS, FFKM (Kalrez) standard, Viton, EPDM, Buna, Neoprene as needed for some gases. If your application demands a different material, please contact Alicat.


Communications / Power	MCE & MCES Mass Flow Controller	
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass Flow, Volumetric Flow, Pressure and Temperature	
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS	
Analog Input/Output Signal ² Options	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA	
Optional Secondary Analog Input/Output Signal ²	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA	
Electrical Connection Options	8 Pin Mini-DIN / 9-pin D-sub (DB9) / 15-pin D-sub (DB15) / 6 pin locking	
Supply Voltage	12 to 30 Vdc (15-30 Vdc for 4-20 mA outputs)	
Supply Current	0.250 Amp	
1 The Digital Output Signal communicates Mass Flow Volumetric Flow Pressure and Temperature		

1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature


2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature

Range Specific Specifications

Full Scale Flow Mass Controller	Pressure Drop at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ¹
MCE 0.5 sccm to 50 sccm	1.0		
MCE 100 sccm to 500 sccm	1.0		
MCE 1 slpm	1.5		
MCE 2 slpm	3.0	4.6"H x 4.9"W x 1.5"D	1/4" VCR® Male
MCE 5 slpm	2.0		
MCE 10 slpm	5.5		
MCE 20 slpm	20.0		
1. Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE connections upon request.			

MCE approximate weight: 3.0 lb.

MCES approximate weight: 3.3 lb.

Technical Data for Alicat MCD and MCRD Dual Valve Mass Flow controllers

0 to 0.5 sccm Full Scale through 0 to 3000 slpm Full Scale

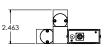
Standard Operating Specifications (Contact Alicat for available options)

Performance			
	MCD Mass Flow Contro	oller	MCRD Mass Flow Controller
Accuracy at calibration conditions after tare	± (0.8% of reading + 0.2% of total span from positive full scale to negative full scale		
High Accuracy at calibration conditions after tare			l scale to negative full scale) nged under 5 sccm or over 500 slpm.
Repeatability		± 0.2% Full S	cale
Zero Shift and Span Shift	0.02%	Full Scale / °C	Celsius / Atm
Operating Range / Turndown Ratio	0.5% to 100)% Full Scale /	200:1 Turndown
Maximum Controllable Flow Rate		102.4% Full S	Scale
Maximum Measurable Flow Rate	up to 1289	% Full Scale (0	Gas Dependent)
Typical Response Time		100 ms (Adjus	table)
Warm-up Time		< 1 Secon	d
Operating Conditions	MCD Mass Flow Controller	MC	RD Mass Flow Controller
Mass Reference Conditions (STP)	25ºC & 14.696 psia (st	tandard — oth	ers available on request)
Operating Temperature	-	10 to +60 °Cel	sius
Humidity Range (Non–Condensing)	0 to 100%		
Max. Internal Pressure (Static)		145 psig	
Proof Pressure		175 psig	
Mounting Attitude Sensitivity	None Mount with valve cylinder vertical & upright		
Valve Type	Normally Closed		
Ingress Protection		IP40	
Wetted Materials	MCD: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Rein- forced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, Brass, 430FR Stainless Steel, Silicon, Glass. MCRD: 303 & 302 Stainless Steel, Viton®, Heat Cured Silicone Rubber, Glass Rein- forced Polyphenylene Sulfide, Heat Cured Epoxy, Aluminum, Gold, 416 Stainless Steel, Silicon, Glass. If your application demands a different material, please contact Alicat.		
Communications / Power	MCD Mass Flow Contro	oller	MCRD Mass Flow Controller
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass F	low, Volumetri	c Flow, Pressure and Temperature
Digital Communications Options1	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS		
	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Analog Input/Output Signal ² Options	0-5 Vuc / 1	0 10 10 10	
Analog Input/Output Signal ² Options Optional Secondary Analog Input/Output Signal ²		-5 Vdc / 0-10 \	
Optional Secondary Analog	0-5 Vdc / 1	-5 Vdc / 0-10 \	
Optional Secondary Analog Input/Output Signal ²	0-5 Vdc / 1	-5 Vdc / 0-10 \ 9), 15 pin D-su	/dc / 4-20 mA

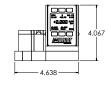
1. The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature

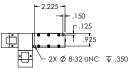
2. The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature

Range Specific Specifications

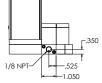

Full Scale Flow Mass Controller	Pressure Drop ¹ at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ²
MCD 0.5 sccm to 50 sccm	1.0		M-5 (10-32) Female Thread ³
MCD 100 sccm to 500 sccm	1.0		
MCD 1 slpm	1.5		
MCD 2 slpm	3.0		1/8" NPT Female
MCD 5 slpm	2.0		1/6 NPT Female
MCD 10 slpm	5.5		
MCD 20 slpm	20.0	Dimensions will vary with valve choice.	
MCRD 50 slpm	2.0		1/4" NPT Female
MCRD 100 slpm	3.2		1/4 INFI Female
MCRD 250 slpm	2.4		1/2" NPT Female
MCRD 500 slpm	6.5		3/4" NPT Female
MCRD 1000 slpm	14.0		(A 1-1/4" NPT Female process
MCRD 1500 slpm	17.0		connection is available for
MCRD 2000 slpm	28.6		2000 slpm controllers.)
MCRD 3000 slpm	16.8		1-1/4" NPT Female
1. Lower Pressure Drops Available, please see our WHISPER-Series mass flow controllers at www.alicat.com/whisper.			

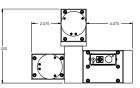
Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE

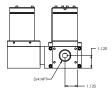

connections upon request.

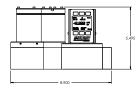

3. Shipped with M-5 (10-32) Male Buna-N O-ring face seal to 1/8" Female NPT fittings.

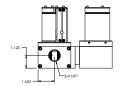
MCD-Series 0 - 20 slpm shown











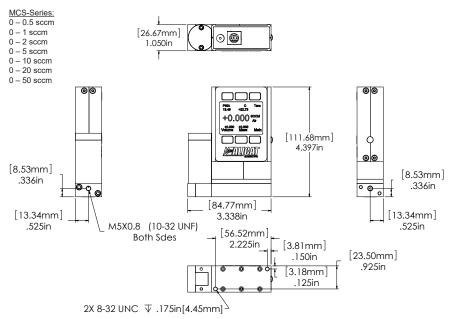

MCRD-Series 0 - 2000 slpm shown

Technical Data for Alicat MCS and MCRS Mass Flow controllers 0 – 0.5 sccm Full Scale through 0 – 5000 slpm Full Scale

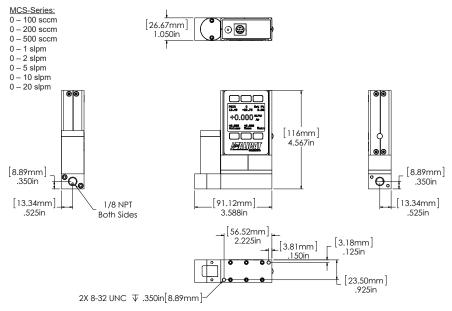
Alicat MCS and MCRS instruments are built for use with certain aggressive gases. Standard Operating Specifications (Contact Alicat for available options)

Performance	MCS & N	ICRS Mass Flo	ow Controller	
Accuracy at calibration conditions after tare	± (0.8% of Reading + 0.2% of Full Scale)		% of Full Scale)	
High Accuracy at calibration conditions after tare	± (0.4% of Reading + 0.2% of Full Scale) High Accuracy option not available for units ranged under 5 sccm or over 500 slpm.			
Repeatability		± 0.2% Full Se		
Zero Shift and Span Shift	0.02%	Full Scale / °C	elsius / Atm	
Operating Range / Turndown Ratio	1% to 100	% Full Scale / 1	00:1 Turndown	
Maximum Controllable Flow Rate		102.4% Full S	cale	
Maximum Measurable Flow Rate	up to 128	% Full Scale (G	as Dependent)	
Typical Response Time		100 ms (Adjust	able)	
Warm-up Time		< 1 Second	ł	
Operating Conditions	MCS & MC	CRS Mass Flow	v Controller	
Mass Reference Conditions (STP)	25°C & 14.696 psia (s	tandard — othe	ers available on request)	
Operating Temperature	-	10 to +60 °Cels	ius	
Humidity Range (Non–Condensing)		0 to 100%		
Max. Internal Pressure (Static)		145 psig		
Proof Pressure		175 psig		
Mounting Attitude Sensitivity	None	Mount with	valve cylinder vertical & upright	
Valve Type		Normally Close	d	
Ingress Protection		IP40		
Wetted Materials	316LSS, 303SS, 430FRSS, FFKM (Kalrez) standard, Viton, EPDM, Buna, Neoprene as needed for some gases. If your application demands a different material, please contact Alicat.			
Communications / Power	MCS & MC	CRS Mass Flov	v Controller	
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass F	low, Volumetric	Flow, Pressure and Temperature	
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, DeviceNet, EtherCAT, EtherNet/IP, Modbus RTU, Modbus TCP/IP, PROFIBUS			
Analog Input/Output Signal ² Options	0-5 Vdc / 1	0-5 Vdc / 1-5 Vdc / 0-10 Vdc / 4-20 mA		
Optional Secondary Output Signal ²	0-5 Vdc / 1	-5 Vdc / 0-10 V	dc / 4-20 mA	
Electrical Connection Options	8-Pin Mini-DIN / 9-pin D-sub (DB9	8-Pin Mini-DIN / 9-pin D-sub (DB9) / 15-pin D-sub (DB15) / 6-pin locking / 8-pin M		
Supply Voltage	MCS: 12 to 30 Vdc (15-30 Vdc for 4	-20 mA outputs)	MCRS / MCRHS: 24 to 30 Vdcc	
Supply Current	MCS: 0.250 Amp (MCRHS: 2.0 Amp)			
The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature				

Flow, Volumetric Flow, Pressure or Temperature

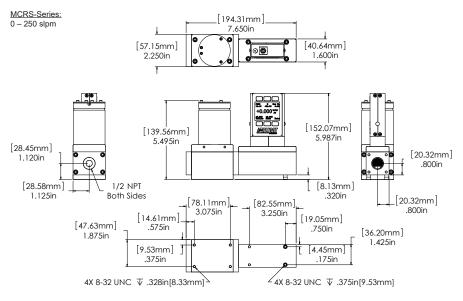

Range	Specific	Specific	ations

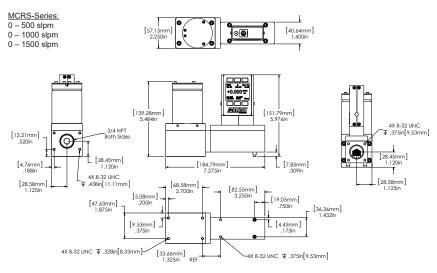
Full Scale Flow Mass Controller	Pressure Drop ¹ at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ²
MCS 0.5 sccm to 50 sccm	1.0	4.4"H x 3.4"W x 1.1"D	M-5 (10-32) Female Thread ³
MCS 100 sccm to 500 sccm	1.0		
MCS 1 slpm	1.5		
MCS 2 slpm	3.0	4.6"H x 3.6"W x 1.1"D	1/8" NPT Female
MCS 5 slpm	2.0	4.0 H X 3.0 W X 1.1 D	1/0 INFT Female
MCS 10 slpm	5.5		
MCS 20 slpm	20.0		
MCRS 50 slpm	2.0	5.7"H x 7.7"W x 2.3"D	1/4" NPT Female
MCRS 100 slpm	3.2	5.7 H X 7.7 W X 2.3 D	1/4 INFI Feillale
MCRS 250 slpm	2.4	6.0"H x 7.7"W x 2.3"D	1/2" NPT Female
MCRS 500 slpm	6.5		3/4" NPT Female
MCRS 1000 slpm	14.0	6.0"H x 7.3"W x 2.3"D	(A 1-1/4" NPT Female process
MCRS 1500 slpm	17.0		connection is available for
MCRS 2000 slpm	28.6	6.0"H x 8.1"W x 2.9"D	2000 slpm controllers.)
MCRS 3000 slpm	16.8	6.0"H x 8.9"W x 2.9"D	1-1/4" NPT Female
MCRHS 5000 slpm	14.1	7.0"H x 9.8"W x 4.5"D	
4 1 D D A-		2	

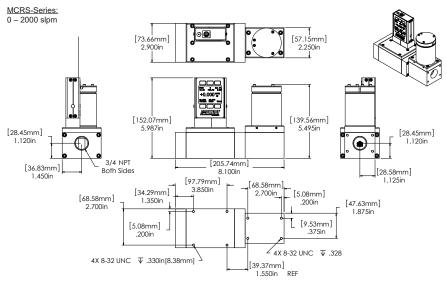

1. Lower Pressure Drops Available, please see our WHISPER-Series mass flow controllers at www.alicat.com/whisper. 2. Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE

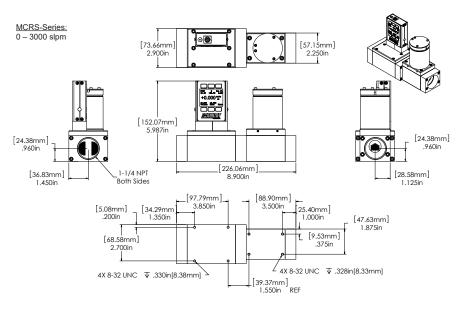
connections upon request.


3. Shipped with 316SS M-5 (10-32) Male Chemraz O-ring face seal to 1/8" Female NPT fittings




100 sccm to 20 slpm approximate weight: 1.2 lb


MCRS 50 slpm to 100 slpm approximate weight: 9.0 lb.


MCRS 250 slpm approximate weight: 9.0 lb.

MCRS 500 slpm to 1500 slpm approximate weight: 9.0 lb.

MCRS 2000 slpm approximate weight: 12.0 lb.

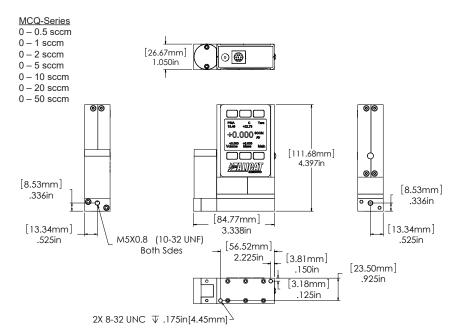
MCRS 3000 slpm approximate weight: 12.0 lb.

Technical Data for Alicat MCQ and MCRQ Mass Flow Controllers 0 to 0.5 sccm Full Scale through 0 to 3000 slpm Full Scale

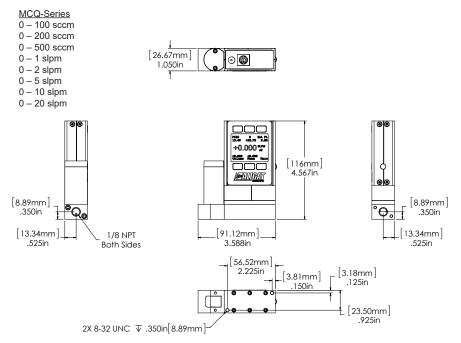
Alicat MCQ and MCRQ units are for high pressure applications. The flow rate is dependent on the pressure in that lower pressures will yield lower flow rates. The Q series should only be ordered after consulting Alicat. MCQ units are calibrated for operation at high pressure. Optimal performance is achieved at higher operating pressures. Minimum Operating Pressure – 30 psia Maximum Operating Pressure – 320 psia

Standard Operating Specifications (Contact Alicat for available options)

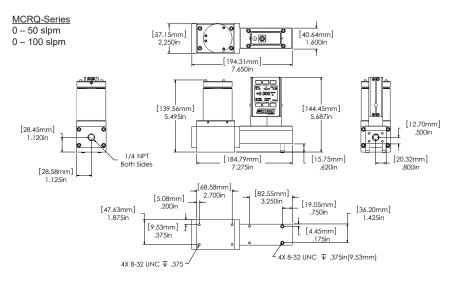
Performance	MCQ & MCRQ Mass Flo	ow Controller
Accuracy at calibration conditions after tare	± 2% of Full Se	cale
Repeatability	± 0.2% Full Sc	cale
Zero Shift and Span Shift	0.02% Full Scale / °Ce	elsius / Atm
Operating Range / Turndown Ratio	2% to 100% Full Scale / 5	50:1 Turndown
Maximum Controllable Flow Rate	102.4% Full So	cale
Maximum Measurable Flow Rate	up to 128% Full Scale (G	as Dependent)
Typical Response Time	100 ms (Adjusta	able)
Warm-up Time	< 1 Second	1
Operating Conditions	MCQ & MCRQ QMass FI	low Controller
Mass Reference Conditions (STP)	25°C & 14.696 psia (standard — oth	ers available on request)
Operating Temperature	-10 to +60 °Ce	Isius
Humidity Range (Non–Condensing)	0 to 100%	
Max. Internal Pressure (Static)	145 psig	
Proof Pressure	175 psig	
Mounting Attitude Sensitivity	MCQ: None MCRQ: Mour	nt with valve cylinder vertical & upright
Valve Type	Normally Clos	ed
Ingress Protection	IP40	
Wetted Materials	MC: 303 & 302 Stainless Steel, Viton®, Heat Curr Polyphenylene Sulfide, Heat Cured Epoxy, Alumir Steel, Silicon, Glass. MCR: 303 & 302 Stainless Steel, Viton®, Heat Cur forced Polyphenylene Sulfide, Heat Cured Epoxy, Silicon, Glass. If your application demands a diffe	num, Gold, Brass, 430FR Stainless ured Silicone Rubber, Glass Rein- , Aluminum, Gold, 416 Stainless Steel,
Communications / Power	MCQ & MCRQ Mass Flo	ow Controller
Monochrome LCD or Color TFT Display with integrated touchpad	Simultaneously displays Mass Flow, Volumetr	ic Flow, Pressure and Temperature
Digital Communications Options ¹	RS-232 Serial, RS-485 Serial, Devicel Modbus RTU, Modbus TCI	
Analog Input/Output Signal ² Options	0-5 Vdc / 1-5 Vdc / 0-10	Vdc / 4-20 mA
Optional Secondary Analog Input/Output Signal ²	0-5 Vdc / 1-5 Vdc / 0-10	Vdc / 4-20 mA
Electrical Connection Options	8 pin Mini-DIN, 9 pin D-sub (DB9), 15 pin D-su	ub (DB15), 6 pin locking, 8 pin M12
Supply Voltage	MCQ: 12 to 30 Vdc (15-30 Vdc for 4-20 mA outputs)	MCRQ: 24 to 30 Vdc
	MCQ: 0.250 Amp	MCR:Q 0.750 Amp (MCRQH: 2.0 Amp)

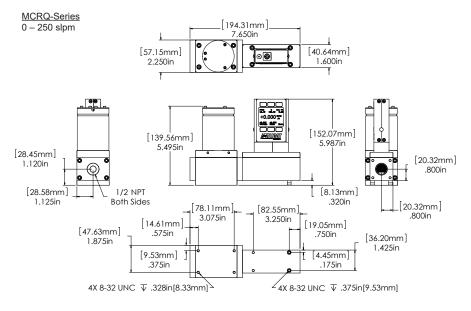

The Digital Output Signal communicates Mass Flow, Volumetric Flow, Pressure and Temperature
 The Analog Output Signal and Optional Secondary Analog Output Signal communicate your choice of Mass Flow, Volumetric Flow, Pressure or Temperature

Range Specific Specifications

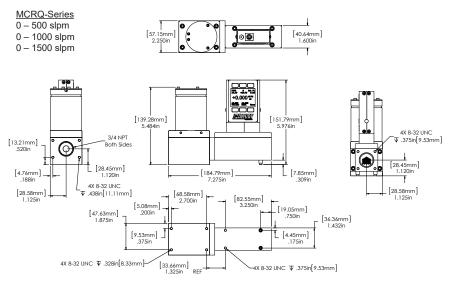

Full Scale Flow Mass Controller	Pressure Drop at FS Flow (psid) venting to atmosphere	Mechanical Dimensions	Process Connections ¹
MCQ 0.5 sccm to 50 sccm	1.0	4.4"H x 3.4"W x 1.1"D	M-5 (10-32) Female Thread ²
MCQ 100 sccm to 500 sccm	1.0		
MCQ 1 slpm	1.5		
MCQ 2 slpm	3.0	4.6"H x 3.6"W x 1.1"D	1/8" NPT Female
MCQ 5 slpm	2.0	4.0 H X 3.0 W X I.I D	1/6 INPT Female
MCQ 10 slpm	5.5		
MCQ 20 slpm	20.0		
MCRQ 50 slpm	2.0	5.7"H x 7.7"W x 2.3"D	1/4" NPT Female
MCRQ 100 slpm	3.2	5.7 H X 7.7 W X Z.3 D	1/4 INFT Female
MCRQ 250 slpm	2.4	6.0"H x 7.7"W x 2.3"D	1/2" NPT Female
MCRQ 500 slpm	6.5		3/4" NPT Female
MCRQ 1000 slpm	14.0	6.0"H x 7.3"W x 2.3"D	(A 1-1/4" NPT Female process
MCRQ 1500 slpm	17.0		connection is available for
MCRQ 2000 slpm	28.6	6.0"H x 8.1"W x 2.9"D	2000 slpm controllers.)
MCRQH 3000 slpm	16.8	6.0"H x 8.9"W x 2.9"D	1-1/4" NPT Female

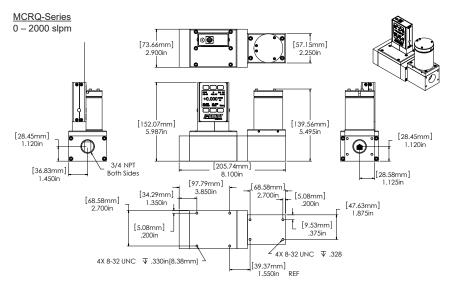
1. Compatible with Swagelok® tube, Parker®, face seal, push connect and compression adapter fittings. VCR and SAE connections upon request.

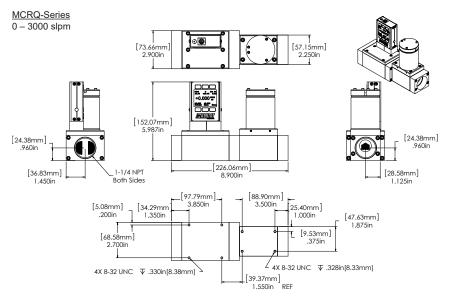

2. Shipped with M-5 (10-32) Male Buna-N O-ring face seal to 1/8" Female NPT fittings.


0.5 sccm to 50 sccm approximate shipping weight: 1.1 lb.



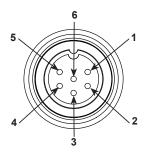

100 sccm to 20 slpm approximate weight: 1.2 lb

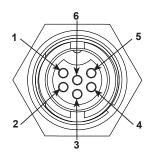

MCRQ 50 slpm to 100 slpm approximate weight: 9.0 lb.



MCRQ 500 slpm to 1500 slpm approximate weight: 9.0 lb.

MCRQ 2000 slpm approximate weight: 12.0 lb.




MCRQ 3000 slpm approximate weight: 12.0 lb.

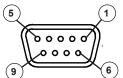
Optional Pinouts

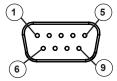
Locking Industrial Connector Pinouts

If your Alicat Instrument was ordered with a Six Pin Locking Industrial connection, please be sure to reference the following pinout diagram.

Male Connector: Cable

Female Connector: Device


Pin	Function
1	Power In (+)
2	RS-232TX / RS-485(+)
3	RS-232RX / RS-485(-)
4	Meters/Gauges = Remote Tare (Ground to Tare)
	Controllers = Analog Setpoint Input
5	Ground (common for power, communications and signals)
6	Signal Out (Voltage or Current as ordered)


The above pinout is applicable to all the flow controllers and controllers ordered with the industrial connector. The availability of different output signals depends on the flow controller options ordered.

9 pin D-Sub Common Pinouts

If your instrument was ordered with a DB9 connection, be sure to check the calibration label on the device or the calibration data sheet and reference the appropriate pinout diagram.

Female Connector Front View

Male Connector Front View

Pin	DB9 (Female) DB9M (Male)	DB9A / DB9K	DB9R	DB9T	DB9U
1	Current Out	NC	TX (+)	TX (+)	RX (-)
2	Analog Out 2	Analog Out	Analog Out	Analog Out	Analog Out
3	RX (-)	Power In	Analog In	Power In	Power In
4	Analog In	Ground	Ground	Ground	Ground
5	TX (+)	TX (+)	NC	NC	NC
6	Analog Out	Analog In	RX (-)	Analog In	Analog In
7	Power In	Ground	Power In	Ground	Ground
8	Ground	Ground	Ground	Ground	Ground
9	Ground	RX (-)	Ground	RX (-)	TX (+)

Common Pinouts

Current Out = Not Connected or optional 4-20 mA analog output signal

Analog In = setpoint for controllers or remote tare function for meters

Analog Out = 0-5 Vdc Output Signal (or 0-10 Vdc optional)

Analog Out 2 = 5.12Vdc or Optional Secondary Analog Output

TX (+) = Serial RS-232TX or RS-485(+)

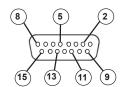
RX (-) = Serial RS-232RX or RS-485(-)

NC = Not Connected

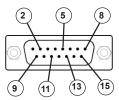
Power In = (+Vdc)

Ground = Common for power, digital communications, analog signals and alarms

		Additio	mainmouts		
Pin	DB9B	DB9G	DB9H	DB9I	DB9N
1	Analog Out 2	RX (-)	TX (+)	NC	Power In
2	Analog Out	Analog Out	Analog Out	Analog Out	Analog In
3	Power In	Ground	Analog In	Power In	Analog Out
4	Ground	Power In	RX (-)	Ground	NC
5	Ground	Ground	Analog Out 2	NC	Ground
6	Analog In	TX (+)	NC	Analog In	Ground
7	Ground	Analog In	Power In	Ground	RX (-)
8	TX (+)	Current Out	Ground	RX (-)	TX (+)
9	RX (-)	Ground	Ground	TX (+)	NC5


Additional Pinouts

Individual pinouts available at www.alicat.com/pinout


Due to variance in cable manufacturing, please identify proper wiring/pins via continuity check & color when using blunt cut multi-strand cables.

15 pin D-Sub Common Pinouts

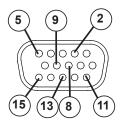
If your instrument was ordered with a DB15 connection, be sure to check the calibration label on the device or the calibration data sheet and reference the appropriate pinout diagram.

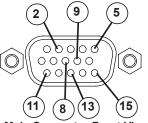
Female Connector Front View

Male Connector Front View

Pin	DB15	DB15A	DB15B	DB15H	DB15K	DB150	DB15S
1	Ground	Ground	Ground	NC	NC	Ground	Ground
2	Analog Out	Analog Out	Analog Out	RX (-)	Analog Out	NC	Analog Out
3	Ground	Analog In	NC	NC	NC	NC	NC
4	NC	Ground	NC	NC	NC	Analog Out	NC
5	Power In	Ground	Power In	Ground	Ground	Power In	Ground
6	NC	Ground	NC	Analog Out	NC	NC	NC
7	NC	Power In	NC	Ground	Power In	Analog In	NC
8	Analog In	TX (+)	Analog In	NC	Analog In	NC⁵	Analog In
9	Ground	Ground	Ground	NC	Analog Out 2	Ground	Ground
10	Ground	NC	Ground	Analog Out 2	NC	Ground	Ground
11	Analog Out 2	NC	Analog Out 2	Power In	Ground	Analog Out 2	Analog Out 2
12	NC	Analog Out 2	NC	Ground	Ground	NC	RX (-)
13	RX (-)	NC	NC	NC	RX (-)	NC	Power In
14	Ground	NC	RX (-)	Analog In	TX (+)	RX (-)	TX (+)
15	TX (+)	RX (-)	TX (+)	TX (+)	Ground	TX (+)	Ground

Analog In = setpoint for controllers or remote tare function for meters Analog Out = 0-5 Vdc Output Signal (or 0-10 Vdc optional) Analog Out 2 = 5.12Vdc or Optional Secondary Analog Output TX (+) = Serial RS-232TX or RS-485(+) RX (-) = Serial RS-232RX or RS-485(-) NC = Not Connected Power In = (+Vdc) Ground = Common for power, digital communications, analog signals and alarms




Individual pinouts available at www.alicat.com/pinout

Due to variance in cable manufacturing, please identify proper wiring/pins via continuity check & color when using blunt cut multi-strand cables.

High Density 15 pin D-Sub Common Pinouts

If your instrument was ordered with a High Density DB15 connection, be sure to check the calibration label on the device or the calibration data sheet and reference the appropriate pinout diagram.

Female Connector Front View

Male Connector Front View

Pin	DB15HD	DB15HDS
1	Ground	Ground
2	Analog Out	Analog Out
3	Ground	Analog In
4	NC	Ground
5	Power In	Ground
6	NC	Ground
7	NC	Power In
8	Analog In	TX (+)
9	Ground	Ground
10	Ground	NC
11	Analog Out 2	NC
12	NC	Analog Out 2
13	RX (-)	NC
14	Ground	NC
15	TX (+)	RX (-)

Analog In = setpoint for controllers or remote tare function for meters Analog Out = 0-5 Vdc Output Signal (or 0-10 Vdc optional)

Analog Out 2 = 5.12Vdc or Optional Secondary Analog Output

TX (+) = Serial RS-232TX or RS-485(+)

RX (-) = Serial RS-232RX or RS-485(-)

NC = Not Connected

Power In = (+Vdc)

Ground = Common for power, digital communications, analog signals and alarms

Individual pinouts available at www.alicat.com/pinout

Due to variance in cable manufacturing, please identify proper wiring/pins via continuity check & color when using blunt cut multi-strand cables.

Additional Information for Alicat CSA and ATEX Approved Devices

EEx nA IIC T4 Class I, Div. 2 Group A, B, C and D T4 24 Vdc, 0.800A max

Class I, Zone 2 AEx nA IIC T4

WARNINGS:

EXPLOSION HAZARD – DO NOT DISCONNECT WHILE CIRCUIT IS LIVE UNLESS AREA IS KNOWN TO BE NON-HAZARDOUS.

EXPLOSION HAZARD – SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.

Alicat CSA / ATEX approved devices are equipped with either a locking six pin industrial connector (IC), locking D-sub 15 pin connector (DB15) or locking D-sub 9 pin connector (DB9). Please see page 94 to page 97 for the correct power and signal connections for each type of connector.

See the following page for special conditions regarding the use of these units!

USE of Alicat instruments (L, LC, LCR, M, MW, MS, MC, MCW, MCS, MCR, MCRW, MCRS, MCD, P, PS, PC, PCD, PCS, PCR and PCRS product families) in Class 1 Division 2 applications.

CSA certifies the use of this product for general use as well as use in hazardous locations as defined by Class 1 Division 2 Group A, B, C and D T4.

CSA certification is indicated by the product label as shown below and not by the statements in this, or any accompanying documentation.

Special Conditions:

To comply with CSA certification the following information is included in the product literature:

- When equipment is properly labeled, it is suitable in Class I, Division 2, Group A, B, C and D, T4
 - Tamb. -40°C to +50°C
- Electrical Rating 24Vdc, 0.800A max
- Instruments shall be powered by a CSA certified, UL listed, Class II external power supply suitable for the application
- Instruments shall be housed in an enclosure with a minimum IP54 rating or location providing equivalent protection
- Instrument's final approval shall be provided by the local authority having jurisdiction

USE of Alicat instruments (L, LC, LCR, M, MW, MS, MC, MCD, MCW, MCS, MCR, MCRW, MCRS, P, PS, PC, PCD, PCS, PCR and PCRS product families) in applications requiring ATEX Class 1 Zone 2 Certification.

Properly labeled Alicat instruments comply to the following ATEX standard:

II 3 G EEx nA IIC T4 (-40°C ≤ Ta ≤ +50°C)

The examination certificate was issued by the CSA in accordance with accepted practices and procedures. This confirms compliance with the European ATEX Directive or Group II Category 3G equipment.

ATEX certification is indicated by the product label as shown above and not by the statements in this, or any accompanying documentation.

Special Conditions:

- Properly labeled equipment is only certified for use in ambient temperatures in the range of -40°C to +50°C only
- Electrical Rating 24Vdc, 0.800A max
- Instruments shall be powered by a CSA certified, UL listed, Class II external power supply suitable for the application
- Instruments shall be housed in an enclosure with a minimum IP54 rating or location providing equivalent protection
- Instrument's final approval shall be provided by the local authority having jurisdiction

This page left intentionally blank

Limited Lifetime Warranty

Alicat Scientific, Inc. warrants to the original purchaser (hereinafter referred to as "Buyer") that instruments manufactured by Alicat Scientific (hereinafter referred to as "Product") shall be free from defects in materials and workmanship for the life of the Products.

Under this warranty, the Products will be repaired or replaced at manufacturer's option, without charge for parts or labor when the Product is carried or shipped prepaid to the factory together with proof of purchase. The foregoing shall constitute the exclusive and sole remedy in lieu of other remedies of the Buyer for any breach by Alicat Scientific of this warranty to the maximum extent permitted by law.

This warranty does not apply to any Product which has not been installed or used in accordance with the Product operation and installation specifications provided to Buyer verbally or in writing by Alicat Scientific for the proper and normal use of the Product.

Buyer agrees hereunder that Alicat reserves the right to void any warranty, written or implied, if upon Alicat's examination of Product shall disclose to Alicat's satisfaction that the Product failure was due solely, or in part, to accident, misuse, neglect, abuse, alteration, improper installation, unauthorized repair or improper testing by Buyer or agent of Buyer.

Alicat Scientific shall not be liable under any circumstances for indirect, special, consequential, or incidental damages in connection with, or arising out of, the sale, performance, or use of the Products covered by this warranty.

Alicat Scientific does not recommend, warrant or assume responsibility for the use of the Products in life support applications or systems.

Alicat's warranties as herein above set forth shall not be enlarged, diminished or affected by, and no obligation or liability shall arise or grow out of Alicat's rendering of technical advice in connection with Buyer's order of the Products furnished hereunder.

If Product becomes obsolete, Alicat Scientific, at its own discretion, reserves the right to repair the Product with available replacement parts or upgrade the Product to a current, commercially available version of the original Product. Should upgrading the Product be deemed necessary by Alicat, Buyer hereby agrees to pay an upgrade fee equal to seventy percent of the retail value of the replacement Product. Alicat Scientific hereunder makes no claim that replacement Products will look, function or operate in the same or similar manner as the original product.

When a Product is returned to Alicat Scientific for recalibration this service is considered normal preventative maintenance. Recalibration of Product shall not be treated as a warranty service unless recalibration of Product is required as the result of repairs to Product pursuant to this Warranty. Failure of Buyer to send Product to Alicat Scientific for recalibration on a yearly basis after a period of 36 months from date of manufacture will remove any and all obligations regarding repair or replacement of Product as outlined by this Warranty to Buyer from Alicat Scientific.

This Warranty is in lieu of all other relevant warranties, expressed or implied, including the implied warranty of merchantability and the implied warranty of fitness for a particular purpose, and any warranty against infringement of any patent.

Continued use or possession of Products after expiration of the applicable warranty period stated above shall be conclusive evidence that the warranty is fulfilled to the full satisfaction of Buyer.

Alicat makes no warranty as to experimental, non-standard or developmental Products.

Accessories purchased from Alicat are not covered by this warranty.

Notice: Alicat Scientific, Inc. reserves the right to make any changes and improvements to the products described in this manual at any time and without notice. This manual is copyrighted. This document may not, in whole or in part, be copied, reproduced, translated, or converted to any electronic medium or machine readable form, for commercial purposes, without prior written consent from the copyright holder.

Note: Although we provide assistance on Alicat Scientific products both personally and through our literature, it is the complete responsibility of the user to determine the suitability of any product to their application.

The product complies with the requirements of the Low Voltage Directive 2014/35/EU, the EMC Directive 2014/30/EU and the RoHS Directive 2011/65/EU and carries the CE Marking accordingly. Contact the manufacturer for more information.

SCIM	SCFM	Flo	19 S	18	17	16	15	14	13	12	11	10	9	8	7	6	თ	4	3	2	-	0	#	
100	M 1.00 = 28.3160 H 1.00 = 0.4719	Flow Conversions:	Sulfur Hexafluoride	Xenon	Krypton	iso-Butane	Ethylene	Acetylene	normal-Butane	Propane	Oxygen	Neon	Nitrous Oxide	Nitrogen	Helium	Hydrogen	Ethane	Carbon Dioxide	Carbon Monoxide	Methane	Argon	Air	Gas	
SLPM) SLPM		SF6	Xe	Kr	i-C4H10	C2H4	C2H2	n-C4H10	C3H8	02	Ne	N20	N2	He	H2	C2H6	CO2	co	CH4	Ar	Air		
	1 SLPM		153.5320	229.8483	251.3249	74.7846	103.1839	104.4480	74.0536	81.4631	205.5021	311.1264	148.4124	178.0474	198.4561	89.1535	93.5412	149.3184	176.4933	110.7595	226.2399	184.8989	Viscosity* 25°C	Absolute
пп	100.00 = 3.5316 100.00 = 211.9093		6.0383	5.3950	3.4323	2.4403	1.1533	1.0720	2.4493	1.8320	1.3088	0.8244	1.8089	1.1453	0.16353	0.08235	1.2385	1.8080	1.1453	0.6569	1.6339	1.1840	25°C 14.696PSIA	Density **
88	93		0.9887	0.9947	0.9979	0.9735	0.9943	0.9928	0.9699	0.9838	0.9994	1.0005	0.9945	8666'0	1.0005	1.0006	0.9924	0.9950	0.9996	0.9982	0.9994	0.9997	25°C 14.696PSIA	Compressibility
IZ:	SCFM																						Þ	ility
	YFM							Re	ni*	29		28		27	 }	26	25	24	23	22	21	20	⊳ #	ility
Phone: 8	_	7641 N						Reference: NIST REFP	*in micropoise (1 Poise	36	Sta		90% Ar / 8% CO2 /		%06	26 75% He / 25% Ar	25 75% Ar / 25% He	24 75% CO2 / 25% Ar	23 98% Ar / 2% CO2	22 92% Ar / 8% CO2	21 90% Ar / 10% CO2	20 75%Ar / 25% CO2		liity
Phone: 8	_	7641 N Bus						Reference: NIST REFPROP 9	*in micropoise (1 Poise = grar		Stargon® CS	2% 02		2.5% CO2	90% He / 7.5% Ar /	75% He / 25% Ar	75% Ar / 25% He			_			#	liity
Phone: 888-290-6060 A HALMA CO	_	7641 N Business Pa						Reference: NIST REFPROP 9 Database	*in micropoise (1 Poise = gram / (cm) (sec	95% Ar / 5% CH4	Stargon® CS		90% Ar / 8% CO2 /		90% He / 7.5% Ar /			75% CO2 / 25% Ar	98% Ar / 2% CO2	92% Ar / 8% CO2	90% Ar / 10% CO2	75%Ar / 25% CO2	#	Absolute
		7641 N Business Park Drive	SCIENTIFIC					Reference: NIST REFPROP 9 Database	*in micropoise (1 Poise = gram / (cm) (sec)) **Grams/Liter	95% Ar / 5% CH4 P-5	Stargon® CS	2% O2 Star29	90% Ar / 8% CO2 /	2.5% CO2 A1025	90% He / 7.5% Ar /	75% He / 25% Ar HE-25	75% Ar / 25% He	75% CO2 / 25% Ar C-75	98% Ar / 2% CO2 C-2	92% Ar / 8% CO2 C-8	90% Ar / 10% CO2 C-10	75%Ar / 25% CO2 C-25	# Gas	

Gas Viscosity, Density and Compressibility:

alicat.com

The Fastest Flow Controller Company in the World!